These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33820057)

  • 1. Interlaboratory validation of a hanging pendulum thrust balance for electric propulsion testing.
    Schwertheim A; Rosati Azevedo E; Liu G; Bosch Borràs E; Bianchi L; Knoll A
    Rev Sci Instrum; 2021 Mar; 92(3):034502. PubMed ID: 33820057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of a torsional balance for thrust measurements of Hall effect and microwave-based space propulsion systems.
    Masillo S; Stubbing J; Swar K; Staab D; Garbayo A; Lucca Fabris A
    Rev Sci Instrum; 2022 Nov; 93(11):114501. PubMed ID: 36461544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of inverted pendulum thrust stand with spring-shaped wire for high power electric thrusters.
    Yamasaki J; Nonaka M; Yokota S; Shimamura K
    Rev Sci Instrum; 2023 Mar; 94(3):034501. PubMed ID: 37012807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sub-millinewton thrust stand and wireless power coupler for microwave-powered small satellite thrusters.
    Wachs BN; Jorns BA
    Rev Sci Instrum; 2022 Aug; 93(8):083507. PubMed ID: 36050119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thrust stand for vertically oriented electric propulsion performance evaluation.
    Moeller T; Polzin KA
    Rev Sci Instrum; 2010 Nov; 81(11):115108. PubMed ID: 21133502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a cantilever beam thrust stand for electric propulsion thrusters.
    Zhang H; Li DT; Li H
    Rev Sci Instrum; 2020 Nov; 91(11):115104. PubMed ID: 33261444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a two-dimensional dual pendulum thrust stand for Hall thrusters.
    Nagao N; Yokota S; Komurasaki K; Arakawa Y
    Rev Sci Instrum; 2007 Nov; 78(11):115108. PubMed ID: 18052505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recommended Practice for Thrust Measurement in Electric Propulsion Testing.
    Polk JE; Pancotti A; Haag T; King S; Walker M; Blakely J; Ziemer J
    J Propuls Power; 2017 May; 33(3):539-555. PubMed ID: 33510551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-contact thrust stand calibration method for repetitively pulsed electric thrusters.
    Wong AR; Toftul A; Polzin KA; Pearson JB
    Rev Sci Instrum; 2012 Feb; 83(2):025103. PubMed ID: 22380121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thrust stand based on a single point load cell for impulse measurements from plasma thrusters.
    Conde L; Lahoz MD; Grabulosa J; Hernández R; González J; Delgado M; Damba J
    Rev Sci Instrum; 2020 Feb; 91(2):023308. PubMed ID: 32113423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-power, null-type, inverted pendulum thrust stand.
    Xu KG; Walker ML
    Rev Sci Instrum; 2009 May; 80(5):055103. PubMed ID: 19485530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thirty percent conversion efficiency from radiofrequency power to thrust energy in a magnetic nozzle plasma thruster.
    Takahashi K
    Sci Rep; 2022 Nov; 12(1):18618. PubMed ID: 36357485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct measurement of 1-mN-class thrust and 100-s-class specific impulse for a CubeSat propulsion system.
    Asakawa J; Nishii K; Nakagawa Y; Koizumi H; Komurasaki K
    Rev Sci Instrum; 2020 Mar; 91(3):035116. PubMed ID: 32260002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of plasma noise on a direct thrust measurement system.
    Pottinger SJ; Lamprou D; Knoll AK; Lappas VJ
    Rev Sci Instrum; 2012 Mar; 83(3):033504. PubMed ID: 22462919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method for evaluating the thrust of a space propulsion device with wide range time variations using a disturbance observer.
    Kakami A; Muto T; Yano Y; Tachibana T
    Rev Sci Instrum; 2015 Nov; 86(11):115114. PubMed ID: 26628179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Note: Precision balance for sub-miliNewton resolution direct thrust measurement.
    Karadag B; Cho S; Funaki I
    Rev Sci Instrum; 2018 Aug; 89(8):086108. PubMed ID: 30184648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A compound pendulum for thrust measurement of micro-Newton thruster.
    Xu H; Gao Y; Mao QB; Ye LW; Hu ZK; Zhang K; Song P; Li Q
    Rev Sci Instrum; 2022 Jun; 93(6):064501. PubMed ID: 35778050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A torsion balance for impulse and thrust measurements of micro-Newton thrusters.
    Yang YX; Tu LC; Yang SQ; Luo J
    Rev Sci Instrum; 2012 Jan; 83(1):015105. PubMed ID: 22299984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas.
    West MD; Charles C; Boswell RW
    Rev Sci Instrum; 2009 May; 80(5):053509. PubMed ID: 19485509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization, Test and Diagnostics of Miniaturized Hall Thrusters.
    Lim JWM; Levchenko I; Rohaizat MWAB; Huang S; Xu L; Sun YF; Potrivitu GC; Yee JS; Sim RZW; Wang Y; Levchenko S; Bazaka K; Xu S
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30829319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.