These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 33820159)

  • 1. Non-invasive single photon imaging through strongly scattering media.
    Maruca S; Rehain P; Sua YM; Zhu S; Huang Y
    Opt Express; 2021 Mar; 29(7):9981-9990. PubMed ID: 33820159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-invasive imaging through opaque scattering layers.
    Bertolotti J; van Putten EG; Blum C; Lagendijk A; Vos WL; Mosk AP
    Nature; 2012 Nov; 491(7423):232-4. PubMed ID: 23135468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wavefront shaping: A versatile tool to conquer multiple scattering in multidisciplinary fields.
    Yu Z; Li H; Zhong T; Park JH; Cheng S; Woo CM; Zhao Q; Yao J; Zhou Y; Huang X; Pang W; Yoon H; Shen Y; Liu H; Zheng Y; Park Y; Wang LV; Lai P
    Innovation (Camb); 2022 Sep; 3(5):100292. PubMed ID: 36032195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NeuWS: Neural wavefront shaping for guidestar-free imaging through static and dynamic scattering media.
    Feng BY; Guo H; Xie M; Boominathan V; Sharma MK; Veeraraghavan A; Metzler CA
    Sci Adv; 2023 Jun; 9(26):eadg4671. PubMed ID: 37379386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speckle-resolved optical coherence tomography for mesoscopic imaging within scattering media.
    Cua M; Blochet B; Yang C
    Biomed Opt Express; 2022 Apr; 13(4):2068-2081. PubMed ID: 35519275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Penetration depth of low-coherence enhanced backscattered light in subdiffusion regime.
    Subramanian H; Pradhan P; Kim YL; Backman V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041914. PubMed ID: 17500928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging through dynamical scattering media by two-photon absorption detectors.
    Liu W; Zhou Z; Chen L; Luo X; Liu Y; Chen X; Wan W
    Opt Express; 2021 Sep; 29(19):29972-29981. PubMed ID: 34614730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media.
    Lai P; Wang L; Tay JW; Wang LV
    Nat Photonics; 2015 Feb; 9(2):126-132. PubMed ID: 25914725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using beam-offset optical coherence tomography to reconstruct backscattered photon profiles in scattering media.
    Xu W; Wang H
    Biomed Opt Express; 2022 Nov; 13(11):6124-6135. PubMed ID: 36733762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large field-of-view non-invasive imaging through scattering layers using fluctuating random illumination.
    Zhu L; Soldevila F; Moretti C; d'Arco A; Boniface A; Shao X; de Aguiar HB; Gigan S
    Nat Commun; 2022 Mar; 13(1):1447. PubMed ID: 35304460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of the photon average trajectories method to real-time reconstruction of tissue inhomogeneities in diffuse optical tomography of strongly scattering media.
    Lyubimov VV; Kalintsev AG; Konovalov AB; Lyamtsev OV; Kravtsenyuk OV; Murzin AG; Golubkina OV; Mordvinov GB; Soms LN; Yavorskaya LM
    Phys Med Biol; 2002 Jun; 47(12):2109-28. PubMed ID: 12118604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-invasive super-resolution imaging through dynamic scattering media.
    Wang D; Sahoo SK; Zhu X; Adamo G; Dang C
    Nat Commun; 2021 May; 12(1):3150. PubMed ID: 34035297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-Invasive Imaging Through Scattering Medium by Using a Reverse Response Wavefront Shaping Technique.
    Sanjeev A; Kapellner Y; Shabairou N; Gur E; Sinvani M; Zalevsky Z
    Sci Rep; 2019 Aug; 9(1):12275. PubMed ID: 31439914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smart optical coherence tomography for ultra-deep imaging through highly scattering media.
    Badon A; Li D; Lerosey G; Boccara AC; Fink M; Aubry A
    Sci Adv; 2016 Nov; 2(11):e1600370. PubMed ID: 27847864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wavefront Shaping Concepts for Application in Optical Coherence Tomography-A Review.
    Kanngiesser J; Roth B
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33316998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-invasive focusing and imaging in scattering media with a fluorescence-based transmission matrix.
    Boniface A; Dong J; Gigan S
    Nat Commun; 2020 Dec; 11(1):6154. PubMed ID: 33262335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double Interferometer Design for Independent Wavefront Manipulation in Spectral Domain Optical Coherence Tomography.
    Kanngiesser J; Rahlves M; Roth B
    Sci Rep; 2019 Oct; 9(1):14651. PubMed ID: 31601904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of the surface effect of a small scattering object in a highly scattering medium by use of diffuse photon-pairs density wave.
    Wu JS; Yu LP; Chou C
    J Biomed Opt; 2016 Jun; 21(6):60504. PubMed ID: 27304418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A boundary migration model for imaging within volumetric scattering media.
    Du D; Jin X; Deng R; Kang J; Cao H; Fan Y; Li Z; Wang H; Ji X; Song J
    Nat Commun; 2022 Jun; 13(1):3234. PubMed ID: 35680924
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.