These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
65. High-speed three-dimensional measurement technique for object surface with a large range of reflectivity variations. Wang J; Yang Y Appl Opt; 2018 Oct; 57(30):9172-9182. PubMed ID: 30461907 [TBL] [Abstract][Full Text] [Related]
66. Monocular depth estimation method using a focus tunable lens. Choi S; Min SW Appl Opt; 2019 Dec; 58(34):G52-G60. PubMed ID: 31873485 [TBL] [Abstract][Full Text] [Related]
67. Out-of-Focus Projector Calibration Method with Distortion Correction on the Projection Plane in the Structured Light Three-Dimensional Measurement System. Zhang J; Zhang Y; Chen B Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29261172 [TBL] [Abstract][Full Text] [Related]
68. Acceleration of autofocusing with improved edge extraction using structure tensor and Schatten norm. Ren Z; Lam EY; Zhao J Opt Express; 2020 May; 28(10):14712-14728. PubMed ID: 32403507 [TBL] [Abstract][Full Text] [Related]
69. Radial phase variation computing: a tool to improve flaw detection in optical diagnosis by shearographic images. Fantin AV; Willemann DP; Viotti MR; Albertazzi A Appl Opt; 2013 Aug; 52(22):5460-8. PubMed ID: 23913066 [TBL] [Abstract][Full Text] [Related]
70. Multimodal fringe detection for a self-mixing interferometry-based vibration sensor. Usman M; Zabit U; Asad Alam S Appl Opt; 2020 Dec; 59(36):11342-11350. PubMed ID: 33362059 [TBL] [Abstract][Full Text] [Related]
72. An improved phase shift reconstruction algorithm of fringe scanning technique for X-ray microscopy. Lian S; Yang H; Kudo H; Momose A; Yashiro W Rev Sci Instrum; 2015 Feb; 86(2):023707. PubMed ID: 25725852 [TBL] [Abstract][Full Text] [Related]
73. Image processing applied to the interactive analysis of interferometric fringes. Funnell WR Appl Opt; 1981 Sep; 20(18):3245-50. PubMed ID: 20333128 [TBL] [Abstract][Full Text] [Related]
74. Autofocus algorithm for dispersion correction in optical coherence tomography. Marks DL; Oldenburg AL; Reynolds JJ; Boppart SA Appl Opt; 2003 Jun; 42(16):3038-46. PubMed ID: 12790455 [TBL] [Abstract][Full Text] [Related]
75. Synthetic aperture radar autofocus based on a bilinear model. Liu KH; Wiesel A; Munson DC IEEE Trans Image Process; 2012 May; 21(5):2735-46. PubMed ID: 22249713 [TBL] [Abstract][Full Text] [Related]
76. Analysis of Disparity Error for Stereo Autofocus. Yang CC; Huang SK; Shih KT; Chen HH IEEE Trans Image Process; 2018 Apr; 27(4):1575-1585. PubMed ID: 28463196 [TBL] [Abstract][Full Text] [Related]
77. Fast processing of microscopic images using object-based extended depth of field. Intarapanich A; Kaewkamnerd S; Pannarut M; Shaw PJ; Tongsima S BMC Bioinformatics; 2016 Dec; 17(Suppl 19):516. PubMed ID: 28155648 [TBL] [Abstract][Full Text] [Related]
78. Interference illumination of three nonzero-order beams for LCOS-based structured illumination microscopy. Qu Y; Pan H; Peng R; Niu J; Li C J Microsc; 2019 Aug; 275(2):97-106. PubMed ID: 31087655 [TBL] [Abstract][Full Text] [Related]
79. All-optical microscope autofocus based on an electrically tunable lens and a totally internally reflected IR laser. Bathe-Peters M; Annibale P; Lohse MJ Opt Express; 2018 Feb; 26(3):2359-2368. PubMed ID: 29401776 [TBL] [Abstract][Full Text] [Related]
80. Optical method of determination of stress at a point. Chakraborty RN; Sarkar SK; Basuray A Opt Lett; 1997 Apr; 22(7):427-9. PubMed ID: 18183223 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]