These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33820186)

  • 1. Deep-learning-enabled inverse engineering of multi-wavelength invisibility-to-superscattering switching with phase-change materials.
    Luo J; Li X; Zhang X; Guo J; Liu W; Lai Y; Zhan Y; Huang M
    Opt Express; 2021 Mar; 29(7):10527-10537. PubMed ID: 33820186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring localized ENZ resonances and their role in superscattering, wideband invisibility, and tunable scattering.
    Serebryannikov AE; Ozbay E
    Sci Rep; 2024 Jan; 14(1):1580. PubMed ID: 38238347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous Inverse Design of Materials and Structures via Deep Learning: Demonstration of Dipole Resonance Engineering Using Core-Shell Nanoparticles.
    So S; Mun J; Rho J
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24264-24268. PubMed ID: 31199610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental Observation of Superscattering.
    Qian C; Lin X; Yang Y; Xiong X; Wang H; Li E; Kaminer I; Zhang B; Chen H
    Phys Rev Lett; 2019 Feb; 122(6):063901. PubMed ID: 30822094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multilayer homogeneous dielectric filler for electromagnetic invisibility.
    Serna A; Molina LJ; Rivero J; Landesa L; Taboada JM
    Sci Rep; 2018 Sep; 8(1):13923. PubMed ID: 30224632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction and Inverse Design of Structural Colors of Nanoparticle Systems via Deep Neural Network.
    Ma L; Hu K; Wang C; Yang JY; Liu L
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Switching from visibility to invisibility via Fano resonances: theory and experiment.
    Rybin MV; Filonov DS; Belov PA; Kivshar YS; Limonov MF
    Sci Rep; 2015 Mar; 5():8774. PubMed ID: 25739324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-wavelength invisibility integrated with various invisibility tactics.
    Xu S; Dong FY; Guo WR; Han DD; Qian C; Gao F; Su WM; Chen H; Sun HB
    Sci Adv; 2020 Sep; 6(39):. PubMed ID: 32967829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-dielectric multilayer cylindrical structures for invisibility cloaking.
    Mirzaei A; Miroshnichenko AE; Shadrivov IV; Kivshar YS
    Sci Rep; 2015 Apr; 5():9574. PubMed ID: 25858295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General deep learning framework for emissivity engineering.
    Yu S; Zhou P; Xi W; Chen Z; Deng Y; Luo X; Li W; Shiomi J; Hu R
    Light Sci Appl; 2023 Dec; 12(1):291. PubMed ID: 38052800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloaking and enhanced scattering of core-shell plasmonic nanowires.
    Mirzaei A; Shadrivov IV; Miroshnichenko AE; Kivshar YS
    Opt Express; 2013 May; 21(9):10454-9. PubMed ID: 23669901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From Fano-like interference to superscattering with a single metallic nanodisk.
    Wan W; Zheng W; Chen Y; Liu Z
    Nanoscale; 2014 Aug; 6(15):9093-102. PubMed ID: 24975582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. General Strategy for Broadband Coherent Perfect Absorption and Multi-wavelength All-optical Switching Based on Epsilon-Near-Zero Multilayer Films.
    Kim TY; Badsha MA; Yoon J; Lee SY; Jun YC; Hwangbo CK
    Sci Rep; 2016 Mar; 6():22941. PubMed ID: 26965195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering multimode resonances for tunable multifrequency superscattering.
    Jie Liu Y; Yuan Dong H; Dong ZG; Wang J
    Opt Express; 2022 Jan; 30(2):1219-1227. PubMed ID: 35209286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient inverse design and spectrum prediction for nanophotonic devices based on deep recurrent neural networks.
    Yan R; Wang T; Jiang X; Huang X; Wang L; Yue X; Wang H; Wang Y
    Nanotechnology; 2021 May; 32(33):. PubMed ID: 33971632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning: an efficient method for plasmonic design of geometric nanoparticles.
    Du Q; Zhang Q; Liu G
    Nanotechnology; 2021 Oct; 32(50):. PubMed ID: 34530417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural network enabled metasurface design for phase manipulation.
    Jiang L; Li X; Wu Q; Wang L; Gao L
    Opt Express; 2021 Jan; 29(2):2521-2528. PubMed ID: 33726445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear control of invisibility cloaking.
    Zharova NA; Shadrivov IV; Zharov AA; Kivshar YS
    Opt Express; 2012 Jul; 20(14):14954-9. PubMed ID: 22772190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Invisibility and cloaking based on scattering cancellation.
    Chen PY; Soric J; Alù A
    Adv Mater; 2012 Nov; 24(44):OP281-304. PubMed ID: 23080411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Convolutional Mixture Density Network for Inverse Design of Layered Photonic Structures.
    Unni R; Yao K; Zheng Y
    ACS Photonics; 2020 Oct; 7(10):2703-2712. PubMed ID: 38031541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.