These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33820188)

  • 1. Surface plasmon resonances boost the transverse magneto-optical Kerr effect in a CoFeB slab covered by a subwavelength gold grating for highly sensitive detectors.
    Wang Q; Yao H; Feng Y; Deng X; Yang B; Xiong D; He M; Zhang W
    Opt Express; 2021 Mar; 29(7):10546-10555. PubMed ID: 33820188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Transverse Magneto-Optical Kerr Effect in Magnetoplasmonic Crystals for the Design of Highly Sensitive Plasmonic (Bio)sensing Platforms.
    Diaz-Valencia BF; Mejía-Salazar JR; Oliveira ON; Porras-Montenegro N; Albella P
    ACS Omega; 2017 Nov; 2(11):7682-7685. PubMed ID: 30023560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ferromagnetic Subwavelength Periodic Nanogroove Structure with High Magneto-Optical Kerr Effect for Sensing Applications.
    Du G; Zuo Y; Liu N; Liu Z; Zhang L; Zhang W
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):31087-31091. PubMed ID: 37318511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupled mode enhanced giant magnetoplasmonics transverse Kerr effect.
    Halagačka L; Vanwolleghem M; Postava K; Dagens B; Pištora J
    Opt Express; 2013 Sep; 21(19):21741-55. PubMed ID: 24104068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced transverse magneto-optical Kerr effect using ferromagnetic metal perforated with nanopore arrays.
    Zhang W; Du G; Chen H; An K
    Phys Chem Chem Phys; 2023 Apr; 25(14):9796-9799. PubMed ID: 36947001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of strong transverse magneto-optical Kerr effect on high sensitive surface plasmon grating sensors.
    Chou KH; Lin EP; Chen TC; Lai CH; Wang LW; Chang KW; Lee GB; Lee MC
    Opt Express; 2014 Aug; 22(16):19794-802. PubMed ID: 25321061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double-layered metal grating for high-performance refractive index sensing.
    Li G; Shen Y; Xiao G; Jin C
    Opt Express; 2015 Apr; 23(7):8995-9003. PubMed ID: 25968735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broadband Enhancement of Magneto-Optical Effects in Hybrid Waveguide-Plasmonic Surfaces for Sensing.
    Carvalho WOF; Spadoti DH; Oliveira ON; Mejía-Salazar JR
    ACS Appl Mater Interfaces; 2024 Aug; 16(32):42942-42946. PubMed ID: 39087324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic field sensor based on magnetoplasmonic crystal.
    Belyaev VK; Rodionova VV; Grunin AA; Inoue M; Fedyanin AA
    Sci Rep; 2020 Apr; 10(1):7133. PubMed ID: 32346012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of Nanoarchitectures for Magnetoplasmonic Biosensing with Near-Zero-Transmittance Conditions.
    Pfaffenbach ES; Carvalho WOF; Oliveira ON; Mejía-Salazar JR
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):60672-60677. PubMed ID: 34882403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magneto-Optical properties of noble-metal nanostructures: functional nanomaterials for bio sensing.
    Manera MG; Colombelli A; Taurino A; Martin AG; Rella R
    Sci Rep; 2018 Aug; 8(1):12640. PubMed ID: 30139943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications.
    Ignatyeva DO; Knyazev GA; Kapralov PO; Dietler G; Sekatskii SK; Belotelov VI
    Sci Rep; 2016 Jun; 6():28077. PubMed ID: 27306301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of Enhanced Polar Magneto-Optic Kerr Effect by Surface Plasmons in Au Bowtie Arrays.
    Liu J; Long L; Yang Y
    Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36678005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-performance refractive index sensing system based on multiple Fano resonances in polarization-insensitive metasurface with nanorings.
    Shen Z; Du M
    Opt Express; 2021 Aug; 29(18):28287-28296. PubMed ID: 34614963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-Function Meta-Grating Based on Tunable Fano Resonance for Reflective Filter and Sensor Applications.
    Liu F; Jia H; Chen Y; Luo X; Huang M; Wang M; Zhang X
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boosting figures of merit of cavity plasmon resonance based refractive index sensing in dielectric-metal core-shell resonators.
    Li Z; Sun R; Zhang C; Wan M; Gu P; Shen Q; Chen Z; Wang Z
    Opt Express; 2016 Aug; 24(17):19895-904. PubMed ID: 27557265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-sensitivity plasmonic sensor by narrowing Fano resonances in a tilted metallic nano-groove array.
    Jia S; Li Z; Chen J
    Opt Express; 2021 Jul; 29(14):21358-21368. PubMed ID: 34265925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-referenced refractive index sensor based on double-dips method with bimetal-dielectric and double-groove grating.
    Zhao M; Wang J; Zhang Y; Ge M; Zhang P; Shen J; Li C
    Opt Express; 2022 Feb; 30(5):8376-8390. PubMed ID: 35299580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. VIS-NIR TMOKE enhanced dielectric-metal hybrid structure for high performance dual-channel sensing.
    Li L; Du L; Zong X; Liu Y
    Opt Express; 2023 Oct; 31(22):35880-35891. PubMed ID: 38017750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-reference plasmonic sensors based on double Fano resonances.
    Wang Y; Sun C; Li H; Gong Q; Chen J
    Nanoscale; 2017 Aug; 9(31):11085-11092. PubMed ID: 28741643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.