BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 33820225)

  • 1. Analyzing the effect of incident angle on echo intensity acquired by hyperspectral lidar based on the Lambert-Beckman model.
    Qian X; Yang J; Shi S; Gong W; Du L; Chen B; Chen B
    Opt Express; 2021 Mar; 29(7):11055-11069. PubMed ID: 33820225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis and Radiometric Calibration for Backscatter Intensity of Hyperspectral LiDAR Caused by Incident Angle Effect.
    Tian W; Tang L; Chen Y; Li Z; Zhu J; Jiang C; Hu P; He W; Wu H; Pan M; Lu J; Hyyppä J
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 10-nm Spectral Resolution Hyperspectral LiDAR System Based on an Acousto-Optic Tunable Filter.
    Chen Y; Li W; Hyyppä J; Wang N; Jiang C; Meng F; Tang L; Puttonen E; Li C
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30987354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Target intensity correction method based on incidence angle and distance for a pulsed Lidar system.
    Qi B; Yang G; Zhang Y; Wang C
    Appl Opt; 2024 Apr; 63(10):A86-A97. PubMed ID: 38568515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyzing the effect of the incidence angle on chlorophyll fluorescence intensity based on laser-induced fluorescence lidar.
    Yang J; Cheng Y; Du L; Gong W; Shi S; Sun J; Chen B
    Opt Express; 2019 Apr; 27(9):12541-12550. PubMed ID: 31052794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperspectral lidar point cloud segmentation based on geometric and spectral information.
    Chen B; Shi S; Sun J; Gong W; Yang J; Du L; Guo K; Wang B; Chen B
    Opt Express; 2019 Aug; 27(17):24043-24059. PubMed ID: 31510299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral missing color correction based on an adaptive parameter fitting model.
    Wang T; Liu D; Xue Z; Wan X
    Opt Express; 2023 Feb; 31(5):8561-8574. PubMed ID: 36859968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prototype development and evaluation of a hyperspectral lidar optical receiving system.
    Qian L; Wu D; Liu D; Shi S; Song S; Gong W
    Opt Express; 2024 Mar; 32(7):10786-10800. PubMed ID: 38570944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility of Hyperspectral Single Photon Lidar for Robust Autonomous Vehicle Perception.
    Taher J; Hakala T; Jaakkola A; Hyyti H; Kukko A; Manninen P; Maanpää J; Hyyppä J
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential of spectral ratio indices derived from hyperspectral LiDAR and laser-induced chlorophyll fluorescence spectra on estimating rice leaf nitrogen contents.
    Du L; Shi S; Yang J; Wang W; Sun J; Cheng B; Zhang Z; Gong W
    Opt Express; 2017 Mar; 25(6):6539-6549. PubMed ID: 28381001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of hyperspectral LiDAR for monitoring rice leaf nitrogen by comparison with multispectral LiDAR and passive spectrometer.
    Sun J; Shi S; Gong W; Yang J; Du L; Song S; Chen B; Zhang Z
    Sci Rep; 2017 Jan; 7():40362. PubMed ID: 28091610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fusion of Hyperspectral CASI and Airborne LiDAR Data for Ground Object Classification through Residual Network.
    Chang Z; Yu H; Zhang Y; Wang K
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. True color 3D imaging optimization with missing spectral bands based on hyperspectral LiDAR.
    Chen B; Shi S; Chen B; Xu Q; Gong W; Li F
    Opt Express; 2021 Jun; 29(13):20406-20422. PubMed ID: 34266131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The Research of Vegetation Water Content Based on Spectrum Analysis and Angle Slope Index].
    Deng B; Yang WN; Mu N; Zhang C
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Aug; 36(8):2546-52. PubMed ID: 30074361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bidirectional reflectance distribution function based surface modeling of non-Lambertian using intensity data of light detection and ranging.
    Li X; Liang Y; Xu L
    J Opt Soc Am A Opt Image Sci Vis; 2014 Sep; 31(9):2055-63. PubMed ID: 25401446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncertainty in multispectral lidar signals caused by incidence angle effects.
    Kaasalainen S; Åkerblom M; Nevalainen O; Hakala T; Kaasalainen M
    Interface Focus; 2018 Apr; 8(2):20170033. PubMed ID: 29503718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deriving backscatter reflective factors from 32-channel full-waveform LiDAR data for the estimation of leaf biochemical contents.
    Li W; Niu Z; Sun G; Gao S; Wu M
    Opt Express; 2016 Mar; 24(5):4771-4785. PubMed ID: 29092306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calibration of the Pulse Signal Decay Effect of Full-Waveform Hyperspectral LiDAR.
    Zhang C; Gao S; Niu Z; Pei J; Bi K; Sun G
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incident Angle Identification Based on First-Echo Energy Attenuation in Ultrasonic Thickness Measurement.
    Wang Y; Lian M; Liu H; Ying Y; Zhou L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Nov; 65(11):2141-2149. PubMed ID: 30176585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infrared detector module for airborne hyperspectral LiDAR: design and demonstration.
    Qian L; Wu D; Liu D; Zhong L; Shi S; Song S; Gong W
    Appl Opt; 2023 Mar; 62(8):2161-2167. PubMed ID: 37133106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.