BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33820237)

  • 1. Nonlinear interferometric surface-plasmon-resonance sensor.
    Wang H; Fu Z; Ni Z; Zhang X; Zhao C; Jin S; Jing J
    Opt Express; 2021 Mar; 29(7):11194-11206. PubMed ID: 33820237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear atom interferometer surpasses classical precision limit.
    Gross C; Zibold T; Nicklas E; Estève J; Oberthaler MK
    Nature; 2010 Apr; 464(7292):1165-9. PubMed ID: 20357767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SU(2)-in-SU(1,1) Nested Interferometer for High Sensitivity, Loss-Tolerant Quantum Metrology.
    Du W; Kong J; Bao G; Yang P; Jia J; Ming S; Yuan CH; Chen JF; Ou ZY; Mitchell MW; Zhang W
    Phys Rev Lett; 2022 Jan; 128(3):033601. PubMed ID: 35119880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-channel curvature sensor based on fiber bending loss wavelength and SPR.
    Wei Y; Liu C; Liu C; Shi C; Wang R; Wang X; Ren Z; Ran Z; Liu Z; Zhang Y
    Opt Lett; 2022 Nov; 47(22):6017-6020. PubMed ID: 37219161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrahigh sensitivity polarimetric strain sensor based upon D-shaped optical fiber and surface plasmon resonance technology.
    Lo YL; Chuang CH; Lin ZW
    Opt Lett; 2011 Jul; 36(13):2489-91. PubMed ID: 21725454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a High-Performance Micro Integrated Surface Plasmon Resonance Sensor Based on Silicon-On-Insulator Rib Waveguide Array.
    Yuan D; Dong Y; Liu Y; Li T
    Sensors (Basel); 2015 Jul; 15(7):17313-28. PubMed ID: 26193277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasensitive Gas Refractometer Using Capillary-Based Mach-Zehnder Interferometer.
    Chen H; Hu X; He M; Ren P; Zhang C; Qu H
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Up-down Taper Based In-Fiber Mach-Zehnder Interferometer for Liquid Refractive Index Sensing.
    Han X; Liu C; Jiang S; Leng S; Yang J
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advancing Sensitivity in Guided-Wave Surface Plasmon Resonance Sensor through Integration of 2D BlueP/MoS
    Yuan X; Wu L; Qin Y
    Biosensors (Basel); 2023 Dec; 14(1):. PubMed ID: 38248402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protection of Noise Squeezing in a Quantum Interferometer with Optimal Resource Allocation.
    Huang W; Liang X; Zhu B; Yan Y; Yuan CH; Zhang W; Chen LQ
    Phys Rev Lett; 2023 Feb; 130(7):073601. PubMed ID: 36867793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Localized Surface Plasmon Resonance Sensor Using Double-Metal-Complex Nanostructures and a Review of Recent Approaches.
    Ahn H; Song H; Choi JR; Kim K
    Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29301238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A surface plasmon resonance probe without optical fibers as a portable sensing device.
    Akimoto T; Wada S; Karube I
    Anal Chim Acta; 2008 Mar; 610(1):119-24. PubMed ID: 18267148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An absorption-based surface plasmon resonance sensor applied to sodium ion sensing based on an ion-selective optode membrane.
    Kurihara K; Nakamura K; Hirayama E; Suzuki K
    Anal Chem; 2002 Dec; 74(24):6323-33. PubMed ID: 12510755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of an absorption-based surface plasmon resonance principle to the development of SPR ammonium ion and enzyme sensors.
    Fujii E; Koike T; Nakamura K; Sasaki S; Kurihara K; Citterio D; Iwasaki Y; Niwa O; Suzuki K
    Anal Chem; 2002 Dec; 74(23):6106-10. PubMed ID: 12498209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum Interferometer Combining Squeezing and Parametric Amplification.
    Zuo X; Yan Z; Feng Y; Ma J; Jia X; Xie C; Peng K
    Phys Rev Lett; 2020 May; 124(17):173602. PubMed ID: 32412253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Figure of Merit Enhancement of a Surface Plasmon Resonance Sensor Using a Low-Refractive-Index Porous Silica Film.
    Meng QQ; Zhao X; Lin CY; Chen SJ; Ding YC; Chen ZY
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28796155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization.
    Bardin F; Bellemain A; Roger G; Canva M
    Biosens Bioelectron; 2009 Mar; 24(7):2100-5. PubMed ID: 19084391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly sensitive vibration sensor based on the dispersion turning point microfiber Mach-Zehnder interferometer.
    Liu K; Fan J; Luo B; Zou X; Wu D; Zou X; Shi S; Guo Y; Zhao M
    Opt Express; 2021 Oct; 29(21):32983-32995. PubMed ID: 34809119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasensitive broadband photoacoustic microscopy based on common-path interferometric surface plasmon resonance sensing.
    Song W; Dong Y; Shan Y; Yang F; Min C; Yuan X
    Photoacoustics; 2022 Dec; 28():100419. PubMed ID: 36339639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface plasmon resonance-based highly sensitive optical touch sensor with a hybrid noise rejection scheme.
    Sumriddetchkajorn S; Chaitavon K
    Appl Opt; 2006 Jan; 45(1):172-7. PubMed ID: 16425458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.