These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
47. Fast optoelectronic charge state conversion of silicon vacancies in diamond. Rieger M; Villafañe V; Todenhagen LM; Matthies S; Appel S; Brandt MS; Müller K; Finley JJ Sci Adv; 2024 Feb; 10(8):eadl4265. PubMed ID: 38381816 [TBL] [Abstract][Full Text] [Related]
48. Coherent spin control of a nanocavity-enhanced qubit in diamond. Li L; Schröder T; Chen EH; Walsh M; Bayn I; Goldstein J; Gaathon O; Trusheim ME; Lu M; Mower J; Cotlet M; Markham ML; Twitchen DJ; Englund D Nat Commun; 2015 Jan; 6():6173. PubMed ID: 25629223 [TBL] [Abstract][Full Text] [Related]
49. Cavity-Enhanced Raman Emission from a Single Color Center in a Solid. Sun S; Zhang JL; Fischer KA; Burek MJ; Dory C; Lagoudakis KG; Tzeng YK; Radulaski M; Kelaita Y; Safavi-Naeini A; Shen ZX; Melosh NA; Chu S; Lončar M; Vučković J Phys Rev Lett; 2018 Aug; 121(8):083601. PubMed ID: 30192607 [TBL] [Abstract][Full Text] [Related]
50. Demonstration of diamond microlens structures by a three-dimensional (3D) dual-mask method. Zhang Y; Li Y; Liu L; Yang C; Chen Y; Yu S Opt Express; 2017 Jun; 25(13):15572-15580. PubMed ID: 28788979 [TBL] [Abstract][Full Text] [Related]
53. GaN Nanowire Arrays for Efficient Optical Read-Out and Optoelectronic Control of NV Centers in Diamond. Hetzl M; Wierzbowski J; Hoffmann T; Kraut M; Zuerbig V; Nebel CE; Müller K; Finley JJ; Stutzmann M Nano Lett; 2018 Jun; 18(6):3651-3660. PubMed ID: 29792713 [TBL] [Abstract][Full Text] [Related]
54. Optically Detected Magnetic Resonance in Neutral Silicon Vacancy Centers in Diamond via Bound Exciton States. Zhang ZH; Stevenson P; Thiering G; Rose BC; Huang D; Edmonds AM; Markham ML; Lyon SA; Gali A; de Leon NP Phys Rev Lett; 2020 Dec; 125(23):237402. PubMed ID: 33337180 [TBL] [Abstract][Full Text] [Related]
55. Purcell Enhancement and Spin Spectroscopy of Silicon Vacancy Centers in Silicon Carbide Using an Ultrasmall Mode-Volume Plasmonic Cavity. So JP; Luo J; Choi J; McCullian B; Fuchs GD Nano Lett; 2024 Sep; 24(37):11669-11675. PubMed ID: 39248392 [TBL] [Abstract][Full Text] [Related]
56. Large-scale integration of artificial atoms in hybrid photonic circuits. Wan NH; Lu TJ; Chen KC; Walsh MP; Trusheim ME; De Santis L; Bersin EA; Harris IB; Mouradian SL; Christen IR; Bielejec ES; Englund D Nature; 2020 Jul; 583(7815):226-231. PubMed ID: 32641812 [TBL] [Abstract][Full Text] [Related]
57. Bright Single-Photon Emitting Diodes Based on the Silicon-Vacancy Center in AlN/Diamond Heterostructures. Khramtsov IA; Fedyanin DY Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32092962 [TBL] [Abstract][Full Text] [Related]
58. Generation of Tin-Vacancy Centers in Diamond via Shallow Ion Implantation and Subsequent Diamond Overgrowth. Rugar AE; Lu H; Dory C; Sun S; McQuade PJ; Shen ZX; Melosh NA; Vučković J Nano Lett; 2020 Mar; 20(3):1614-1619. PubMed ID: 32031821 [TBL] [Abstract][Full Text] [Related]
59. Efficient Single-Photon Coupling from a Nitrogen-Vacancy Center Embedded in a Diamond Nanowire Utilizing an Optical Nanofiber. Yonezu Y; Wakui K; Furusawa K; Takeoka M; Semba K; Aoki T Sci Rep; 2017 Oct; 7(1):12985. PubMed ID: 29021540 [TBL] [Abstract][Full Text] [Related]
60. Photonic-Cavity-Enhanced Laser Writing of Color Centers in Diamond. Addhya A; Tyne V; Guo X; Hammock IN; Li Z; Leung M; DeVault CT; Awschalom DD; Delegan N; Heremans FJ; High AA Nano Lett; 2024 Sep; 24(36):11224-11231. PubMed ID: 39207952 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]