These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 33820389)
1. Dephasing-assisted entanglement in a system of strongly coupled qubits. Vovcenko IV; Shishkov VY; Andrianov ES Opt Express; 2021 Mar; 29(6):9685-9698. PubMed ID: 33820389 [TBL] [Abstract][Full Text] [Related]
2. Entanglement Degradation in Two Interacting Qubits Coupled to Dephasing Environments. Abdelmagid R; Alshehhi K; Sadiek G Entropy (Basel); 2023 Oct; 25(10):. PubMed ID: 37895579 [TBL] [Abstract][Full Text] [Related]
3. Ultrafast optical control of individual quantum dot spin qubits. De Greve K; Press D; McMahon PL; Yamamoto Y Rep Prog Phys; 2013 Sep; 76(9):092501. PubMed ID: 24006335 [TBL] [Abstract][Full Text] [Related]
4. Coherent transfer of electron spin correlations assisted by dephasing noise. Nakajima T; Delbecq MR; Otsuka T; Amaha S; Yoneda J; Noiri A; Takeda K; Allison G; Ludwig A; Wieck AD; Hu X; Nori F; Tarucha S Nat Commun; 2018 May; 9(1):2133. PubMed ID: 29849025 [TBL] [Abstract][Full Text] [Related]
5. Modeling the decay of entanglement for electron spin qubits in quantum dots. Bodoky F; Gühne O; Blaauboer M J Phys Condens Matter; 2009 Sep; 21(39):395602. PubMed ID: 21832394 [TBL] [Abstract][Full Text] [Related]
6. Multistage entanglement swapping using superconducting qubits in the absence and presence of dissipative environment without Bell state measurement. Salimian S; Tavassoly MK; Ghasemi M Sci Rep; 2023 Sep; 13(1):16342. PubMed ID: 37770646 [TBL] [Abstract][Full Text] [Related]
7. Phonon-mediated generation of quantum correlations between quantum dot qubits. Krzywda J; Roszak K Sci Rep; 2016 Apr; 6():23753. PubMed ID: 27033973 [TBL] [Abstract][Full Text] [Related]
8. Dephasing-Insensitive Quantum Information Storage and Processing with Superconducting Qubits. Guo Q; Zheng SB; Wang J; Song C; Zhang P; Li K; Liu W; Deng H; Huang K; Zheng D; Zhu X; Wang H; Lu CY; Pan JW Phys Rev Lett; 2018 Sep; 121(13):130501. PubMed ID: 30312077 [TBL] [Abstract][Full Text] [Related]
9. Generation of three-qubit entangled states using superconducting phase qubits. Neeley M; Bialczak RC; Lenander M; Lucero E; Mariantoni M; O'Connell AD; Sank D; Wang H; Weides M; Wenner J; Yin Y; Yamamoto T; Cleland AN; Martinis JM Nature; 2010 Sep; 467(7315):570-3. PubMed ID: 20882012 [TBL] [Abstract][Full Text] [Related]
10. Heralded Bell State of Dissipative Qubits Using Classical Light in a Waveguide. Zhang XHH; Baranger HU Phys Rev Lett; 2019 Apr; 122(14):140502. PubMed ID: 31050491 [TBL] [Abstract][Full Text] [Related]
11. Quantum Synchronization and Entanglement of Dissipative Qubits Coupled to a Resonator. Chepelianskii AD; Shepelyansky DL Entropy (Basel); 2024 May; 26(5):. PubMed ID: 38785664 [TBL] [Abstract][Full Text] [Related]
12. Autonomously stabilized entanglement between two superconducting quantum bits. Shankar S; Hatridge M; Leghtas Z; Sliwa KM; Narla A; Vool U; Girvin SM; Frunzio L; Mirrahimi M; Devoret MH Nature; 2013 Dec; 504(7480):419-22. PubMed ID: 24270808 [TBL] [Abstract][Full Text] [Related]
13. Entangled States Are Harder to Transfer than Product States. Apollaro TJG; Lorenzo S; Plastina F; Consiglio M; Życzkowski K Entropy (Basel); 2022 Dec; 25(1):. PubMed ID: 36673187 [TBL] [Abstract][Full Text] [Related]
14. Dissipative production of a maximally entangled steady state of two quantum bits. Lin Y; Gaebler JP; Reiter F; Tan TR; Bowler R; Sørensen AS; Leibfried D; Wineland DJ Nature; 2013 Dec; 504(7480):415-8. PubMed ID: 24270806 [TBL] [Abstract][Full Text] [Related]
16. Tunneling, decoherence, and entanglement of two spins interacting with a dissipative bath. Sahrapour MM; Makri N J Chem Phys; 2013 Mar; 138(11):114109. PubMed ID: 23534629 [TBL] [Abstract][Full Text] [Related]