BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 33820623)

  • 1. Uncovering cellular networks in branching morphogenesis using single-cell transcriptomics.
    Goodwin K; Nelson CM
    Curr Top Dev Biol; 2021; 143():239-280. PubMed ID: 33820623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Looking at the developing lung in single-cell resolution.
    Mižíková I; Thébaud B
    Am J Physiol Lung Cell Mol Physiol; 2021 May; 320(5):L680-L687. PubMed ID: 33205990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological and Medical Importance of Cellular Heterogeneity Deciphered by Single-Cell RNA Sequencing.
    Gupta RK; Kuznicki J
    Cells; 2020 Jul; 9(8):. PubMed ID: 32707839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances and Challenges in Spatial Transcriptomics for Developmental Biology.
    Choe K; Pak U; Pang Y; Hao W; Yang X
    Biomolecules; 2023 Jan; 13(1):. PubMed ID: 36671541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single Cell Sequencing and Kidney Organoids Generated from Pluripotent Stem Cells.
    Wu H; Humphreys BD
    Clin J Am Soc Nephrol; 2020 Apr; 15(4):550-556. PubMed ID: 31992574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D culture models for studying branching morphogenesis in the mammary gland and mammalian lung.
    Nerger BA; Nelson CM
    Biomaterials; 2019 Apr; 198():135-145. PubMed ID: 30174198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Integrative Single-cell Transcriptomic Atlas of the Post-natal Mouse Mammary Gland Allows Discovery of New Developmental Trajectories in the Luminal Compartment.
    García Solá ME; Stedile M; Beckerman I; Kordon EC
    J Mammary Gland Biol Neoplasia; 2021 Mar; 26(1):29-42. PubMed ID: 33913090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concordance of MERFISH spatial transcriptomics with bulk and single-cell RNA sequencing.
    Liu J; Tran V; Vemuri VNP; Byrne A; Borja M; Kim YJ; Agarwal S; Wang R; Awayan K; Murti A; Taychameekiatchai A; Wang B; Emanuel G; He J; Haliburton J; Oliveira Pisco A; Neff NF
    Life Sci Alliance; 2023 Jan; 6(1):. PubMed ID: 36526371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single cell transcriptome sequencing: A new approach for the study of mammalian sex determination.
    Stévant I; Nef S
    Mol Cell Endocrinol; 2018 Jun; 468():11-18. PubMed ID: 29371022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Challenges and considerations for single-cell and spatially resolved transcriptomics sample collection during spaceflight.
    Overbey EG; Das S; Cope H; Madrigal P; Andrusivova Z; Frapard S; Klotz R; Bezdan D; Gupta A; Scott RT; Park J; Chirko D; Galazka JM; Costes SV; Mason CE; Herranz R; Szewczyk NJ; Borg J; Giacomello S
    Cell Rep Methods; 2022 Nov; 2(11):100325. PubMed ID: 36452864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-cell and spatial transcriptomics approaches of cardiovascular development and disease.
    Roth R; Kim S; Kim J; Rhee S
    BMB Rep; 2020 Aug; 53(8):393-399. PubMed ID: 32684243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data Analysis in Single-Cell Transcriptome Sequencing.
    Gao S
    Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in high-throughput single-cell transcriptomics and spatial transcriptomics.
    Shen X; Zhao Y; Wang Z; Shi Q
    Lab Chip; 2022 Dec; 22(24):4774-4791. PubMed ID: 36254761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-cell Transcriptomics and Solid Organ Transplantation.
    Malone AF; Humphreys BD
    Transplantation; 2019 Sep; 103(9):1776-1782. PubMed ID: 30946217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SLICE: determining cell differentiation and lineage based on single cell entropy.
    Guo M; Bao EL; Wagner M; Whitsett JA; Xu Y
    Nucleic Acids Res; 2017 Apr; 45(7):e54. PubMed ID: 27998929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introducing single cell stereo-sequencing technology to transform the plant transcriptome landscape.
    Bawa G; Liu Z; Yu X; Tran LP; Sun X
    Trends Plant Sci; 2024 Feb; 29(2):249-265. PubMed ID: 37914553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined lineage tracing and scRNA-seq reveals unexpected first heart field predominance of human iPSC differentiation.
    Galdos FX; Lee C; Lee S; Paige S; Goodyer W; Xu S; Samad T; Escobar GV; Darsha A; Beck A; Bak RO; Porteus MH; Wu SM
    Elife; 2023 Jun; 12():. PubMed ID: 37284748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational approaches for interpreting scRNA-seq data.
    Rostom R; Svensson V; Teichmann SA; Kar G
    FEBS Lett; 2017 Aug; 591(15):2213-2225. PubMed ID: 28524227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From Bite to Byte: Dental Structures Resolved at a Single-Cell Resolution.
    Fresia R; Marangoni P; Burstyn-Cohen T; Sharir A
    J Dent Res; 2021 Aug; 100(9):897-905. PubMed ID: 33764175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic and scRNA-seq Analysis Reveals Distinct Cell Populations that Contribute to Salivary Gland Development and Maintenance.
    Song EC; Min S; Oyelakin A; Smalley K; Bard JE; Liao L; Xu J; Romano RA
    Sci Rep; 2018 Sep; 8(1):14043. PubMed ID: 30232460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.