BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 33820823)

  • 1. Cryo-EM Structures of CusA Reveal a Mechanism of Metal-Ion Export.
    Moseng MA; Lyu M; Pipatpolkai T; Glaza P; Emerson CC; Stewart PL; Stansfeld PJ; Yu EW
    mBio; 2021 Apr; 12(2):. PubMed ID: 33820823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport.
    Long F; Su CC; Zimmermann MT; Boyken SE; Rajashankar KR; Jernigan RL; Yu EW
    Nature; 2010 Sep; 467(7314):484-8. PubMed ID: 20865003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Cus efflux system removes toxic ions via a methionine shuttle.
    Su CC; Long F; Yu EW
    Protein Sci; 2011 Jan; 20(1):6-18. PubMed ID: 20981744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryoelectron Microscopy Structures of AdeB Illuminate Mechanisms of Simultaneous Binding and Exporting of Substrates.
    Morgan CE; Glaza P; Leus IV; Trinh A; Su CC; Cui M; Zgurskaya HI; Yu EW
    mBio; 2021 Feb; 12(1):. PubMed ID: 33622726
    [No Abstract]   [Full Text] [Related]  

  • 5. Structural mechanisms of heavy-metal extrusion by the Cus efflux system.
    Delmar JA; Su CC; Yu EW
    Biometals; 2013 Aug; 26(4):593-607. PubMed ID: 23657864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of the CusBA heavy-metal efflux complex of Escherichia coli.
    Su CC; Long F; Zimmermann MT; Rajashankar KR; Jernigan RL; Yu EW
    Nature; 2011 Feb; 470(7335):558-62. PubMed ID: 21350490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charged amino acids (R83, E567, D617, E625, R669, and K678) of CusA are required for metal ion transport in the Cus efflux system.
    Su CC; Long F; Lei HT; Bolla JR; Do SV; Rajashankar KR; Yu EW
    J Mol Biol; 2012 Sep; 422(3):429-41. PubMed ID: 22683351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and mechanism of the tripartite CusCBA heavy-metal efflux complex.
    Long F; Su CC; Lei HT; Bolla JR; Do SV; Yu EW
    Philos Trans R Soc Lond B Biol Sci; 2012 Apr; 367(1592):1047-58. PubMed ID: 22411977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial Metal Resistance: Coping with Copper without Cooperativity?
    Greene NP; Koronakis V
    mBio; 2021 Jun; 12(3):e0065321. PubMed ID: 34126768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Periplasmic domain of CusA in an Escherichia coli Cu+/Ag+ transporter has metal binding sites.
    Yun BY; Xu Y; Piao S; Kim N; Yoon JH; Cho HS; Lee K; Ha NC
    J Microbiol; 2010 Dec; 48(6):829-35. PubMed ID: 21221942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of the membrane fusion protein CusB from Escherichia coli.
    Su CC; Yang F; Long F; Reyon D; Routh MD; Kuo DW; Mokhtari AK; Van Ornam JD; Rabe KL; Hoy JA; Lee YJ; Rajashankar KR; Yu EW
    J Mol Biol; 2009 Oct; 393(2):342-55. PubMed ID: 19695261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryo-EM Structures of AcrD Illuminate a Mechanism for Capturing Aminoglycosides from Its Central Cavity.
    Zhang Z; Morgan CE; Cui M; Yu EW
    mBio; 2023 Feb; 14(1):e0338322. PubMed ID: 36625574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heavy metal transport by the CusCFBA efflux system.
    Delmar JA; Su CC; Yu EW
    Protein Sci; 2015 Nov; 24(11):1720-36. PubMed ID: 26258953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tracking metal ions through a Cu/Ag efflux pump assigns the functional roles of the periplasmic proteins.
    Chacón KN; Mealman TD; McEvoy MM; Blackburn NJ
    Proc Natl Acad Sci U S A; 2014 Oct; 111(43):15373-8. PubMed ID: 25313055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-terminal region of CusB is sufficient for metal binding and metal transfer with the metallochaperone CusF.
    Mealman TD; Zhou M; Affandi T; Chacón KN; Aranguren ME; Blackburn NJ; Wysocki VH; McEvoy MM
    Biochemistry; 2012 Aug; 51(34):6767-75. PubMed ID: 22812620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal export by CusCFBA, the periplasmic Cu(I)/Ag(I) transport system of Escherichia coli.
    Mealman TD; Blackburn NJ; McEvoy MM
    Curr Top Membr; 2012; 69():163-96. PubMed ID: 23046651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryo-Electron Microscopy Structure of an Acinetobacter baumannii Multidrug Efflux Pump.
    Su CC; Morgan CE; Kambakam S; Rajavel M; Scott H; Huang W; Emerson CC; Taylor DJ; Stewart PL; Bonomo RA; Yu EW
    mBio; 2019 Jul; 10(4):. PubMed ID: 31266873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of Escherichia coli CusC, the outer membrane component of a heavy metal efflux pump.
    Kulathila R; Kulathila R; Indic M; van den Berg B
    PLoS One; 2011 Jan; 6(1):e15610. PubMed ID: 21249122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial multidrug efflux transporters.
    Delmar JA; Su CC; Yu EW
    Annu Rev Biophys; 2014; 43():93-117. PubMed ID: 24702006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EPR Spectroscopy Targets Structural Changes in the E. coli Membrane Fusion CusB upon Cu(I) Binding.
    Meir A; Abdelhai A; Moskovitz Y; Ruthstein S
    Biophys J; 2017 Jun; 112(12):2494-2502. PubMed ID: 28636907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.