These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

512 related articles for article (PubMed ID: 33820953)

  • 21. The requirement for immune infiltration and organization in the tumor microenvironment for successful immunotherapy in prostate cancer.
    Jansen CS; Prokhnevska N; Kissick HT
    Urol Oncol; 2019 Aug; 37(8):543-555. PubMed ID: 30446449
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Immature myeloid cells in the tumor microenvironment: Implications for immunotherapy.
    Kamran N; Chandran M; Lowenstein PR; Castro MG
    Clin Immunol; 2018 Apr; 189():34-42. PubMed ID: 27777083
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immune Landscape of Thyroid Cancers: New Insights.
    Menicali E; Guzzetti M; Morelli S; Moretti S; Puxeddu E
    Front Endocrinol (Lausanne); 2020; 11():637826. PubMed ID: 33986723
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Immunotherapy for Metastatic Prostate Cancer: Current and Emerging Treatment Options.
    Chakravarty D; Huang L; Kahn M; Tewari AK
    Urol Clin North Am; 2020 Nov; 47(4):487-510. PubMed ID: 33008499
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Immune cell analyses of the tumor microenvironment in prostate cancer highlight infiltrating regulatory T cells and macrophages as adverse prognostic factors.
    Andersen LB; Nørgaard M; Rasmussen M; Fredsøe J; Borre M; Ulhøi BP; Sørensen KD
    J Pathol; 2021 Oct; 255(2):155-165. PubMed ID: 34255349
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Myeloid-Derived Suppressor Cells in Prostate Cancer: Present Knowledge and Future Perspectives.
    Koinis F; Xagara A; Chantzara E; Leontopoulou V; Aidarinis C; Kotsakis A
    Cells; 2021 Dec; 11(1):. PubMed ID: 35011582
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational Recognition of a Regulatory T-cell-specific Signature With Potential Implications in Prognosis, Immunotherapy, and Therapeutic Resistance of Prostate Cancer.
    Ju M; Fan J; Zou Y; Yu M; Jiang L; Wei Q; Bi J; Hu B; Guan Q; Song X; Dong M; Wang L; Yu L; Wang Y; Kang H; Xin W; Zhao L
    Front Immunol; 2022; 13():807840. PubMed ID: 35812443
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effective combinatorial immunotherapy for castration-resistant prostate cancer.
    Lu X; Horner JW; Paul E; Shang X; Troncoso P; Deng P; Jiang S; Chang Q; Spring DJ; Sharma P; Zebala JA; Maeda DY; Wang YA; DePinho RA
    Nature; 2017 Mar; 543(7647):728-732. PubMed ID: 28321130
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The tumor microenvironment and immune responses in prostate cancer patients.
    Kwon JTW; Bryant RJ; Parkes EE
    Endocr Relat Cancer; 2021 Jul; 28(8):T95-T107. PubMed ID: 34128831
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PTEN-deficient prostate cancer is associated with an immunosuppressive tumor microenvironment mediated by increased expression of IDO1 and infiltrating FoxP3+ T regulatory cells.
    Vidotto T; Saggioro FP; Jamaspishvili T; Chesca DL; Picanço de Albuquerque CG; Reis RB; Graham CH; Berman DM; Siemens DR; Squire JA; Koti M
    Prostate; 2019 Jun; 79(9):969-979. PubMed ID: 30999388
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression of costimulatory and inhibitory receptors in FoxP3
    Toker A; Ohashi PS
    Adv Cancer Res; 2019; 144():193-261. PubMed ID: 31349899
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tumor-infiltrating mesenchymal stem cells: Drivers of the immunosuppressive tumor microenvironment in prostate cancer?
    Krueger TE; Thorek DLJ; Meeker AK; Isaacs JT; Brennen WN
    Prostate; 2019 Feb; 79(3):320-330. PubMed ID: 30488530
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of regulatory T cells in the pathogenesis and treatment of prostate cancer.
    Karpisheh V; Mousavi SM; Naghavi Sheykholeslami P; Fathi M; Mohammadpour Saray M; Aghebati-Maleki L; Jafari R; Majidi Zolbanin N; Jadidi-Niaragh F
    Life Sci; 2021 Nov; 284():119132. PubMed ID: 33513396
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Endogenous Galectin-1 in T Lymphocytes Regulates Anti-prostate Cancer Immunity.
    Corapi E; Carrizo G; Compagno D; Laderach D
    Front Immunol; 2018; 9():2190. PubMed ID: 30319642
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Moving toward improved immune checkpoint immunotherapy for advanced prostate cancer.
    De Velasco MA; Kura Y; Fujita K; Uemura H
    Int J Urol; 2024 Apr; 31(4):307-324. PubMed ID: 38167824
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overcoming Immune Resistance With Radiation Therapy in Prostate Cancer.
    Mulvey A; Muggeo-Bertin E; Berthold DR; Herrera FG
    Front Immunol; 2022; 13():859785. PubMed ID: 35603186
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acquired resistance to cancer immunotherapy: Role of tumor-mediated immunosuppression.
    Saleh R; Elkord E
    Semin Cancer Biol; 2020 Oct; 65():13-27. PubMed ID: 31362073
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Challenges and Prospects of Chimeric Antigen Receptor T-cell Therapy for Metastatic Prostate Cancer.
    Gorchakov AA; Kulemzin SV; Kochneva GV; Taranin AV
    Eur Urol; 2020 Mar; 77(3):299-308. PubMed ID: 31471138
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets.
    Tie Y; Tang F; Wei YQ; Wei XW
    J Hematol Oncol; 2022 May; 15(1):61. PubMed ID: 35585567
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeting myeloid-derived suppressive cells in the tumor microenvironment to enhance the efficacy of cancer immunotherapy.
    Huo S; Liu L; Li Q; Wang J
    Discov Med; 2020; 30(161):119-128. PubMed ID: 33593480
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.