These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 33821425)

  • 41. A high-throughput assay for assessing the cell permeability of combinatorial libraries.
    Yu P; Liu B; Kodadek T
    Nat Biotechnol; 2005 Jun; 23(6):746-51. PubMed ID: 15908941
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Aggregation of liposomes induced by the toxic peptides Alzheimer's Abetas, human amylin and prion (106-126): facilitation by membrane-bound GM1 ganglioside.
    Kurganov B; Doh M; Arispe N
    Peptides; 2004 Feb; 25(2):217-32. PubMed ID: 15063003
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Effects of cepharanthine on liposomal permeability and size].
    Shinoda K; Adachi I; Ueno M; Horikoshi I
    Yakugaku Zasshi; 1990 Mar; 110(3):186-90. PubMed ID: 2374091
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effect of multiple N-methylation on intestinal permeability of cyclic hexapeptides.
    Ovadia O; Greenberg S; Chatterjee J; Laufer B; Opperer F; Kessler H; Gilon C; Hoffman A
    Mol Pharm; 2011 Apr; 8(2):479-87. PubMed ID: 21375270
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improved intratumoral nanoparticle extravasation and penetration by mild hyperthermia.
    Li L; ten Hagen TL; Bolkestein M; Gasselhuber A; Yatvin J; van Rhoon GC; Eggermont AM; Haemmerich D; Koning GA
    J Control Release; 2013 Apr; 167(2):130-7. PubMed ID: 23391444
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanistic study of CBT-Cys click reaction and its application for identifying bioactive N-terminal cysteine peptides in amniotic fluid.
    Zheng Z; Chen P; Li G; Zhu Y; Shi Z; Luo Y; Zhao C; Fu Z; Cui X; Ji C; Wang F; Huang G; Liang G
    Chem Sci; 2017 Jan; 8(1):214-222. PubMed ID: 28451168
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A mathematical model of drug release from liposomes by low frequency ultrasound.
    Enden G; Schroeder A
    Ann Biomed Eng; 2009 Dec; 37(12):2640-5. PubMed ID: 19731036
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Corticoids modulate liposome membrane fluidity and permeability depending on membrane composition and experimental protocol design.
    Kaddah S; Khreich N; Kaddah F; Khrouz L; Charcosset C; Greige-Gerges H
    Biochimie; 2018 Oct; 153():33-45. PubMed ID: 29935242
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Alpha-helical hydrophobic polypeptides form proton-selective channels in lipid bilayers.
    Oliver AE; Deamer DW
    Biophys J; 1994 May; 66(5):1364-79. PubMed ID: 7520289
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Membrane permeable basic peptides: the potential of these peptides for the intracellular delivery of proteins and drugs].
    Futaki S
    Tanpakushitsu Kakusan Koso; 2002 Sep; 47(11):1415-9. PubMed ID: 12229209
    [No Abstract]   [Full Text] [Related]  

  • 51. Substrate-permeable encapsulation of enzymes maintains effective activity, stabilizes against denaturation, and protects against proteolytic degradation.
    Nasseau M; Boublik Y; Meier W; Winterhalter M; Fournier D
    Biotechnol Bioeng; 2001 Dec; 75(5):615-8. PubMed ID: 11745138
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Studies on crystal semi-permeable membrane. II. On the formation of barium sulfate semi-permeable membrane.
    TERAZAWA K
    Jpn J Med Sci Biol; 1954 Apr; 7(2):139-47. PubMed ID: 13211095
    [No Abstract]   [Full Text] [Related]  

  • 53. Cyclic Peptides as Drugs for Intracellular Targets: The Next Frontier in Peptide Therapeutic Development.
    Buckton LK; Rahimi MN; McAlpine SR
    Chemistry; 2021 Jan; 27(5):1487-1513. PubMed ID: 32875673
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nonclassical Size Dependence of Permeation Defines Bounds for Passive Adsorption of Large Drug Molecules.
    Pye CR; Hewitt WM; Schwochert J; Haddad TD; Townsend CE; Etienne L; Lao Y; Limberakis C; Furukawa A; Mathiowetz AM; Price DA; Liras S; Lokey RS
    J Med Chem; 2017 Mar; 60(5):1665-1672. PubMed ID: 28059508
    [TBL] [Abstract][Full Text] [Related]  

  • 55. cis-Peptide Bonds: A Key for Intestinal Permeability of Peptides? .
    Marelli UK; Ovadia O; Frank AO; Chatterjee J; Gilon C; Hoffman A; Kessler H
    Chemistry; 2015 Oct; 21(43):15148-52. PubMed ID: 26337831
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bilayer permeability-based substrate selectivity of an enzyme in liposomes.
    Walde P; Marzetta B
    Biotechnol Bioeng; 1998 Jan; 57(2):216-9. PubMed ID: 10099196
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Gating connexin 43 channels reconstituted in lipid vesicles by mitogen-activated protein kinase phosphorylation.
    Kim DY; Kam Y; Koo SK; Joe CO
    J Biol Chem; 1999 Feb; 274(9):5581-7. PubMed ID: 10026174
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of the antimicrobial peptide temporin L on cell morphology, membrane permeability and viability of Escherichia coli.
    Mangoni ML; Papo N; Barra D; Simmaco M; Bozzi A; Di Giulio A; Rinaldi AC
    Biochem J; 2004 Jun; 380(Pt 3):859-65. PubMed ID: 15032749
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Studies on crystal semi-permeable membrane. IV. Confirmation on formation condition of Pfeiffer's semi-permeable membrane by glass U-formed tube.
    TERAZAWA K
    Jpn J Med Sci Biol; 1954 Jun; 7(3):241-7. PubMed ID: 13211106
    [No Abstract]   [Full Text] [Related]  

  • 60. Functional cell permeable motifs within medically relevant proteins.
    Low W; Mortlock A; Petrovska L; Dottorini T; Dougan G; Crisanti A
    J Biotechnol; 2007 May; 129(3):555-64. PubMed ID: 17331607
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.