These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33821751)

  • 1. CRISPR Cas9 based genome editing in inherited retinal dystrophies.
    Bansal M; Acharya S; Sharma S; Phutela R; Rauthan R; Maiti S; Chakraborty D
    Ophthalmic Genet; 2021 Aug; 42(4):365-374. PubMed ID: 33821751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of CRISPR Tools for Variant Interpretation and Disease Modeling in Inherited Retinal Dystrophies.
    Fuster-García C; García-Bohórquez B; Rodríguez-Muñoz A; Millán JM; García-García G
    Genes (Basel); 2020 Apr; 11(5):. PubMed ID: 32349249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Personalised genome editing - The future for corneal dystrophies.
    Moore CBT; Christie KA; Marshall J; Nesbit MA
    Prog Retin Eye Res; 2018 Jul; 65():147-165. PubMed ID: 29378321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vivo CRISPR/Cas9 Gene Editing Corrects Retinal Dystrophy in the S334ter-3 Rat Model of Autosomal Dominant Retinitis Pigmentosa.
    Bakondi B; Lv W; Lu B; Jones MK; Tsai Y; Kim KJ; Levy R; Akhtar AA; Breunig JJ; Svendsen CN; Wang S
    Mol Ther; 2016 Mar; 24(3):556-63. PubMed ID: 26666451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stargardt's pigmentosa: A novel combination of two inherited retinal dystrophies.
    Bartol-Puyal FA; Méndez-Martínez S; Pardiñas Barón N; Ruiz-Moreno Ó; Pablo L
    Arch Soc Esp Oftalmol (Engl Ed); 2023 Nov; 98(11):665-669. PubMed ID: 37748682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New Editing Tools for Gene Therapy in Inherited Retinal Dystrophies.
    Pulman J; Sahel JA; Dalkara D
    CRISPR J; 2022 Jun; 5(3):377-388. PubMed ID: 35506982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delivery strategies for CRISPR/Cas genome editing tool for retinal dystrophies: challenges and opportunities.
    Lohia A; Sahel DK; Salman M; Singh V; Mariappan I; Mittal A; Chitkara D
    Asian J Pharm Sci; 2022 Mar; 17(2):153-176. PubMed ID: 36320315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precision Medicine Trials in Retinal Degenerations.
    Levi SR; Ryu J; Liu PK; Tsang SH
    Annu Rev Vis Sci; 2021 Sep; 7():851-865. PubMed ID: 34524878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome Editing as a Treatment for the Most Prevalent Causative Genes of Autosomal Dominant Retinitis Pigmentosa.
    Diakatou M; Manes G; Bocquet B; Meunier I; Kalatzis V
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31126147
    [No Abstract]   [Full Text] [Related]  

  • 11. Applications of CRISPR-Cas9 Technology to Genome Editing in Glioblastoma Multiforme.
    Al-Sammarraie N; Ray SK
    Cells; 2021 Sep; 10(9):. PubMed ID: 34571991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple, quick, and efficient CRISPR/Cas9 genome editing method for human induced pluripotent stem cells.
    Geng BC; Choi KH; Wang SZ; Chen P; Pan XD; Dong NG; Ko JK; Zhu H
    Acta Pharmacol Sin; 2020 Nov; 41(11):1427-1432. PubMed ID: 32555510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cas9 genome engineering: Treating inherited retinal degeneration.
    Burnight ER; Giacalone JC; Cooke JA; Thompson JR; Bohrer LR; Chirco KR; Drack AV; Fingert JH; Worthington KS; Wiley LA; Mullins RF; Stone EM; Tucker BA
    Prog Retin Eye Res; 2018 Jul; 65():28-49. PubMed ID: 29578069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo genome editing as a potential treatment strategy for inherited retinal dystrophies.
    Yanik M; Müller B; Song F; Gall J; Wagner F; Wende W; Lorenz B; Stieger K
    Prog Retin Eye Res; 2017 Jan; 56():1-18. PubMed ID: 27623223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity.
    Tadić V; Josipović G; Zoldoš V; Vojta A
    Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9 System and its Research Progress in Gene Therapy.
    Liu W; Yang C; Liu Y; Jiang G
    Anticancer Agents Med Chem; 2019; 19(16):1912-1919. PubMed ID: 31633477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Therapeutic Genome Editing and In Vivo Delivery.
    Ramirez-Phillips AC; Liu D
    AAPS J; 2021 Jun; 23(4):80. PubMed ID: 34080099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene editing technology: Towards precision medicine in inherited retinal diseases.
    Ballios BG; Pierce EA; Huckfeldt RM
    Semin Ophthalmol; 2021 May; 36(4):176-184. PubMed ID: 33621144
    [No Abstract]   [Full Text] [Related]  

  • 19. Genome Surgery and Gene Therapy in Retinal Disorders.
    Chan L; Mahajan VB; Tsang SH
    Yale J Biol Med; 2017 Dec; 90(4):523-532. PubMed ID: 29259518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Review of CRISPR Tools for Treating Usher Syndrome: Applicability, Safety, Efficiency, and In Vivo Delivery.
    Major L; McClements ME; MacLaren RE
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.