These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33822125)

  • 1. Effects of Autumn Warming on Energy Consumption of Diapausing Fall Webworm (Lepidoptera: Arctiidae) Pupae.
    Zhao L; Wang W
    J Insect Sci; 2021 Mar; 21(2):. PubMed ID: 33822125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological Mechanisms of Variable Nutrient Accumulation Patterns Between Diapausing and Non-Diapausing Fall Webworm (Lepidoptera: Arctiidae) Pupae.
    Zhao L; Wang W; Qiu Y; Torson AS
    Environ Entomol; 2021 Oct; 50(5):1158-1165. PubMed ID: 34363460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diapause induction and termination in Hyphantria cunea (Drury) (Lepidoptera: Arctiinae).
    Chen C; Wei X; Xiao H; He H; Xia Q; Xue F
    PLoS One; 2014; 9(5):e98145. PubMed ID: 24878546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Warming Accelerates Carbohydrate Consumption in the Diapausing Overwintering Peach Fruit Moth Carposina sasakii (Lepidoptera: Carposinidae).
    Zhang B; Zhao F; Hoffmann A; Ma G; Ding HM; Ma CS
    Environ Entomol; 2016 Oct; 45(5):1287-1293. PubMed ID: 27426722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome sequencing for identification of diapause-associated genes in fall webworm, Hyphantria cunea Drury.
    Deng Y; Li F; Rieske LK; Sun LL; Sun SH
    Gene; 2018 Aug; 668():229-236. PubMed ID: 29758298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diapause induction, color change, and cold tolerance physiology of the diapausing larvae of the Chouioia cunea (Hymenoptera: Eulophidae).
    Zhao L; Xu X; Xu Z; Liu Y; Sun S
    J Insect Sci; 2014; 14():. PubMed ID: 25527599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiology of diapause and cold hardiness in the overwintering pupae of the fall webworm Hyphantria cunea (Lepidoptera: Arctiidae) in Japan.
    Li Y; Goto M; Ito S; Sato Y; Sasaki K; Goto N
    J Insect Physiol; 2001 Sep; 47(10):1181-1187. PubMed ID: 12770196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasticity of nutrient accumulation patterns in diapausing fall webworm pupae.
    Zhao L; Wang W; Qiu Y; Torson AS
    Bull Entomol Res; 2021 Mar; ():1-8. PubMed ID: 33785080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy Consumption and Cold Hardiness of Diapausing Fall Webworm Pupae.
    Zhao L; Wang X; Liu Z; Torson AS
    Insects; 2022 Sep; 13(9):. PubMed ID: 36135554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A true summer diapause induced by high temperatures in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae).
    Liu Z; Gong P; Wu K; Sun J; Li D
    J Insect Physiol; 2006 Oct; 52(10):1012-20. PubMed ID: 16979652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mild Winter Causes Increased Mortality in the Fall Webworm
    Matsuura T; Bangay R; Tuno N
    Insects; 2023 Jun; 14(6):. PubMed ID: 37367350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimized pupal age of Tenebrio molitor L. (Coleoptera: Tenebrionidae) enhanced mass rearing efficiency of Chouioia cunea Yang (Hymenoptera: Eulophidae).
    Li TH; Che PF; Yang X; Song LW; Zhang CR; Benelli G; Desneux N; Zang LS
    Sci Rep; 2019 Mar; 9(1):3229. PubMed ID: 30824735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of climate change on overwintering pupae of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae).
    Huang J; Li J
    Int J Biometeorol; 2015 Jul; 59(7):863-76. PubMed ID: 25239518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of seasonal acclimation on cold tolerance and biochemical status of the carob moth, Ectomyelois ceratoniae Zeller, last instar larvae.
    Heydari M; Izadi H
    Bull Entomol Res; 2014 Oct; 104(5):592-600. PubMed ID: 24819226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy and lipid metabolism during direct and diapause development in a pierid butterfly.
    Lehmann P; Pruisscher P; Posledovich D; Carlsson M; Käkelä R; Tang P; Nylin S; Wheat CW; Wiklund C; Gotthard K
    J Exp Biol; 2016 Oct; 219(Pt 19):3049-3060. PubMed ID: 27445351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diapause Induced by Temperature and Photoperiod Affects Fatty Acid Compositions and Cold Tolerance of Phthorimaea Operculella (Lepidoptera: Gelechiidae).
    Hemmati C; Moharramipour S; Talebi AA
    Environ Entomol; 2017 Dec; 46(6):1456-1463. PubMed ID: 29126214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geographic variation in critical photoperiod for diapause induction and its temperature dependence in Hyphantria cunea Drury (Lepidoptera: Arctiidae).
    Gomi T
    Oecologia; 1997 Jul; 111(2):160-165. PubMed ID: 28307989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Survey of the native insect natural enemies of Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) in China.
    Yang ZQ; Wang XY; Wei JR; Qu HR; Qiao XR
    Bull Entomol Res; 2008 Jun; 98(3):293-302. PubMed ID: 18312714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local thermal environment and warming influence supercooling and drive widespread shifts in the metabolome of diapausing Pieris rapae butterflies.
    Mikucki EE; Lockwood BL
    J Exp Biol; 2021 Nov; 224(22):. PubMed ID: 34694403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of the natural enemy community of Hyphantria cunea (Lepidoptera: Erebidae) in Dandong, China.
    Zhang X; Yang L; Chen C; Shi J; Zhang Y; Sun S
    J Insect Sci; 2023 Nov; 23(6):. PubMed ID: 38016005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.