These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 33822421)
21. Repurposing simeprevir, calpain inhibitor IV and a cathepsin F inhibitor against SARS-CoV-2 and insights into their interactions with M J A; Francis D; C S S; K G A; C S; Variyar EJ J Biomol Struct Dyn; 2022 Jan; 40(1):325-336. PubMed ID: 32873185 [TBL] [Abstract][Full Text] [Related]
22. Protein-Ligand Docking Simulations with AutoDock4 Focused on the Main Protease of SARS-CoV-2. de Azevedo Junior WF; Bitencourt-Ferreira G; Godoy JR; Adriano HMA; Dos Santos Bezerra WA; Dos Santos Soares AM Curr Med Chem; 2021; 28(37):7614-7633. PubMed ID: 33781188 [TBL] [Abstract][Full Text] [Related]
23. Molecular Docking of Azithromycin, Ritonavir, Lopinavir, Oseltamivir, Ivermectin and Heparin Interacting with Coronavirus Disease 2019 Main and Severe Acute Respiratory Syndrome Coronavirus-2 3C-Like Proteases. Arouche TDS; Martins AY; Ramalho TC; Júnior RNC; Costa FLP; Filho TSA; Neto AMJC J Nanosci Nanotechnol; 2021 Apr; 21(4):2075-2089. PubMed ID: 33500022 [TBL] [Abstract][Full Text] [Related]
24. Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target. Kundu D; Selvaraj C; Singh SK; Dubey VK J Biomol Struct Dyn; 2021 Jun; 39(9):3428-3434. PubMed ID: 32362243 [TBL] [Abstract][Full Text] [Related]
25. Molecular Binding Mechanism and Pharmacology Comparative Analysis of Noscapine for Repurposing against SARS-CoV-2 Protease. Kumar N; Sood D; van der Spek PJ; Sharma HS; Chandra R J Proteome Res; 2020 Nov; 19(11):4678-4689. PubMed ID: 32786685 [TBL] [Abstract][Full Text] [Related]
26. Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors. Bhardwaj VK; Singh R; Sharma J; Rajendran V; Purohit R; Kumar S J Biomol Struct Dyn; 2021 Jul; 39(10):3449-3458. PubMed ID: 32397940 [TBL] [Abstract][Full Text] [Related]
27. Truncated human angiotensin converting enzyme 2; a potential inhibitor of SARS-CoV-2 spike glycoprotein and potent COVID-19 therapeutic agent. Basit A; Ali T; Rehman SU J Biomol Struct Dyn; 2021 Jul; 39(10):3605-3614. PubMed ID: 32396773 [TBL] [Abstract][Full Text] [Related]
28. In silico identification of potential inhibitors of key SARS-CoV-2 3CL hydrolase (Mpro) via molecular docking, MMGBSA predictive binding energy calculations, and molecular dynamics simulation. Choudhary MI; Shaikh M; Tul-Wahab A; Ur-Rahman A PLoS One; 2020; 15(7):e0235030. PubMed ID: 32706783 [TBL] [Abstract][Full Text] [Related]
29. In Silico Screening and Testing of FDA-Approved Small Molecules to Block SARS-CoV-2 Entry to the Host Cell by Inhibiting Spike Protein Cleavage. Ozdemir ES; Le HH; Yildirim A; Ranganathan SV Viruses; 2022 May; 14(6):. PubMed ID: 35746605 [TBL] [Abstract][Full Text] [Related]
30. Structure-based lead optimization of herbal medicine rutin for inhibiting SARS-CoV-2's main protease. Huynh T; Wang H; Luan B Phys Chem Chem Phys; 2020 Nov; 22(43):25335-25343. PubMed ID: 33140777 [TBL] [Abstract][Full Text] [Related]
31. Identification of polyphenols from Ghosh R; Chakraborty A; Biswas A; Chowdhuri S J Biomol Struct Dyn; 2021 Oct; 39(17):6747-6760. PubMed ID: 32762411 [TBL] [Abstract][Full Text] [Related]
32. Systematic Search for SARS-CoV-2 Main Protease Inhibitors for Drug Repurposing: Ethacrynic Acid as a Potential Drug. Isgrò C; Sardanelli AM; Palese LL Viruses; 2021 Jan; 13(1):. PubMed ID: 33451132 [TBL] [Abstract][Full Text] [Related]
34. Pathway enrichment analysis of virus-host interactome and prioritization of novel compounds targeting the spike glycoprotein receptor binding domain-human angiotensin-converting enzyme 2 interface to combat SARS-CoV-2. Gollapalli P; B S S; Rimac H; Patil P; Nalilu SK; Kandagalla S; Shetty P J Biomol Struct Dyn; 2022 Apr; 40(6):2701-2714. PubMed ID: 33146070 [TBL] [Abstract][Full Text] [Related]
35. Interaction of selected terpenoids with two SARS-CoV-2 key therapeutic targets: An in silico study through molecular docking and dynamics simulations. Giofrè SV; Napoli E; Iraci N; Speciale A; Cimino F; Muscarà C; Molonia MS; Ruberto G; Saija A Comput Biol Med; 2021 Jul; 134():104538. PubMed ID: 34116362 [TBL] [Abstract][Full Text] [Related]
36. Aspergillus fumigatus secretes a protease(s) that displays in silico binding affinity towards the SARS-CoV-2 spike protein and mediates SARS-CoV-2 pseudovirion entry into HEK-293T cells. Mjokane N; Akintemi EO; Sabiu S; Gcilitshana OMN; Albertyn J; Pohl CH; Sebolai OM Virol J; 2024 Mar; 21(1):58. PubMed ID: 38448991 [TBL] [Abstract][Full Text] [Related]
37. SARS-CoV-2 Spike Proteins and Cell-Cell Communication Induce P-Selectin and Markers of Endothelial Injury, NETosis, and Inflammation in Human Lung Microvascular Endothelial Cells and Neutrophils: Implications for the Pathogenesis of COVID-19 Coagulopathy. Bhargavan B; Kanmogne GD Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37628764 [TBL] [Abstract][Full Text] [Related]
38. P-selectin Facilitates SARS-CoV-2 Spike 1 Subunit Attachment to Vesicular Endothelium and Platelets. Wang C; Wang S; Ma X; Yao X; Zhan K; Wang Z; He D; Zuo W; Han S; Zhao G; Cao B; Zhao J; Bian X; Wang J ACS Infect Dis; 2024 Aug; 10(8):2656-2667. PubMed ID: 38912949 [TBL] [Abstract][Full Text] [Related]
39. In-silico efficacy of potential phytomolecules from Ayurvedic herbs as an adjuvant therapy in management of COVID-19. Kumar B; Misra A; Singh SP; Dhar YV; Rawat P; Chattopadhyay D; Barik SK; Srivastava S J Food Drug Anal; 2021 Dec; 29(4):559-580. PubMed ID: 35649148 [TBL] [Abstract][Full Text] [Related]
40. SARS-CoV-2 and the spike protein in endotheliopathy. Perico L; Benigni A; Remuzzi G Trends Microbiol; 2024 Jan; 32(1):53-67. PubMed ID: 37393180 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]