These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 33822471)

  • 1. A fundamental developmental transition in Physcomitrium patens is regulated by evolutionarily conserved mechanisms.
    Jaeger R; Moody LA
    Evol Dev; 2021 May; 23(3):123-136. PubMed ID: 33822471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auxin promotes the transition from chloronema to caulonema in moss protonema by positively regulating PpRSL1and PpRSL2 in Physcomitrella patens.
    Jang G; Dolan L
    New Phytol; 2011 Oct; 192(2):319-27. PubMed ID: 21707622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Both chloronemal and caulonemal cells expand by tip growth in the moss Physcomitrella patens.
    Menand B; Calder G; Dolan L
    J Exp Bot; 2007; 58(7):1843-9. PubMed ID: 17404383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assays of Protonemal Growth Responses in Physcomitrella patens Under Blue- and Red-Light Stimuli.
    Miyazaki S; Nakajima M; Kawaide H
    Methods Mol Biol; 2019; 1924():35-43. PubMed ID: 30694465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SEC6 exocyst subunit contributes to multiple steps of growth and development of Physcomitrella (Physcomitrium patens).
    Brejšková L; Hála M; Rawat A; Soukupová H; Cvrčková F; Charlot F; Nogué F; Haluška S; Žárský V
    Plant J; 2021 May; 106(3):831-843. PubMed ID: 33599020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The knock-out of ARP3a gene affects F-actin cytoskeleton organization altering cellular tip growth, morphology and development in moss Physcomitrella patens.
    Finka A; Saidi Y; Goloubinoff P; Neuhaus JM; Zrÿd JP; Schaefer DG
    Cell Motil Cytoskeleton; 2008 Oct; 65(10):769-84. PubMed ID: 18613119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the energy supply on filamentous growth and development in Physcomitrella patens.
    Thelander M; Olsson T; Ronne H
    J Exp Bot; 2005 Feb; 56(412):653-62. PubMed ID: 15611148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NO GAMETOPHORES 2 Is a Novel Regulator of the 2D to 3D Growth Transition in the Moss Physcomitrella patens.
    Moody LA; Kelly S; Clayton R; Weeks Z; Emms DM; Langdale JA
    Curr Biol; 2021 Feb; 31(3):555-563.e4. PubMed ID: 33242390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional profiling reveals conserved and species-specific plant defense responses during the interaction of Physcomitrium patens with Botrytis cinerea.
    Reboledo G; Agorio AD; Vignale L; Batista-García RA; Ponce De León I
    Plant Mol Biol; 2021 Nov; 107(4-5):365-385. PubMed ID: 33521880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanisms of reprogramming of differentiated cells into stem cells in the moss Physcomitrium patens.
    Ishikawa M; Hasebe M
    Curr Opin Plant Biol; 2022 Feb; 65():102123. PubMed ID: 34735974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide transcriptome analysis of gametophyte development in Physcomitrella patens.
    Xiao L; Wang H; Wan P; Kuang T; He Y
    BMC Plant Biol; 2011 Dec; 11():177. PubMed ID: 22168156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local cues and asymmetric cell divisions underpin body plan transitions in the moss Physcomitrella patens.
    Harrison CJ; Roeder AH; Meyerowitz EM; Langdale JA
    Curr Biol; 2009 Mar; 19(6):461-71. PubMed ID: 19303301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physcomitrium patens PpRIC, an ancestral CRIB-domain ROP effector, inhibits auxin-induced differentiation of apical initial cells.
    Ntefidou M; Eklund DM; Le Bail A; Schulmeister S; Scherbel F; Brandl L; Dörfler W; Eichstädt C; Bannmüller A; Ljung K; Kost B
    Cell Rep; 2023 Feb; 42(2):112130. PubMed ID: 36790931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Physcomitrella patens unique alpha-dioxygenase participates in both developmental processes and defense responses.
    Machado L; Castro A; Hamberg M; Bannenberg G; Gaggero C; Castresana C; de León IP
    BMC Plant Biol; 2015 Feb; 15():45. PubMed ID: 25848849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eight types of stem cells in the life cycle of the moss Physcomitrella patens.
    Kofuji R; Hasebe M
    Curr Opin Plant Biol; 2014 Feb; 17():13-21. PubMed ID: 24507489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BLADE-ON-PETIOLE genes are not involved in the transition from protonema to gametophore in the moss Physcomitrella patens.
    Hata Y; Naramoto S; Kyozuka J
    J Plant Res; 2019 Sep; 132(5):617-627. PubMed ID: 31432295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caulonema differentiation in Funaria protonema.
    Johri MM
    Int J Dev Biol; 2020; 64(1-2-3):21-28. PubMed ID: 32659008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Moss
    Rensing SA; Goffinet B; Meyberg R; Wu SZ; Bezanilla M
    Plant Cell; 2020 May; 32(5):1361-1376. PubMed ID: 32152187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blue-light irradiation up-regulates the ent-kaurene synthase gene and affects the avoidance response of protonemal growth in Physcomitrella patens.
    Miyazaki S; Toyoshima H; Natsume M; Nakajima M; Kawaide H
    Planta; 2014 Jul; 240(1):117-24. PubMed ID: 24715198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auxin-mediated developmental control in the moss Physcomitrella patens.
    Thelander M; Landberg K; Sundberg E
    J Exp Bot; 2018 Jan; 69(2):277-290. PubMed ID: 28992074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.