These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 33822587)

  • 1. Enhanced Organic Photocatalysis in Confined Flow through a Carbon Nitride Nanotube Membrane with Conversions in the Millisecond Regime.
    Zou Y; Xiao K; Qin Q; Shi JW; Heil T; Markushyna Y; Jiang L; Antonietti M; Savateev A
    ACS Nano; 2021 Apr; 15(4):6551-6561. PubMed ID: 33822587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perylene diimide growth on both sides of carbon nanotubes for remarkably boosted photocatalytic degradation of diclofenac.
    Bai X; Guo L; Jia T; Hao D; Wang C; Li H; Zong R
    J Hazard Mater; 2022 Aug; 435():128992. PubMed ID: 35489317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical reactions confined within carbon nanotubes.
    Miners SA; Rance GA; Khlobystov AN
    Chem Soc Rev; 2016 Aug; 45(17):4727-46. PubMed ID: 27301444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulating Crystallinity of Graphitic Carbon Nitride for Photocatalytic Oxidation of Alcohols.
    Zhou M; Yang P; Yuan R; Asiri AM; Wakeel M; Wang X
    ChemSusChem; 2017 Nov; 10(22):4451-4456. PubMed ID: 28868731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of three-dimensional mesoporous carbon nitride with high surface area for efficient visible-light-driven hydrogen evolution.
    Zhao S; Fang J; Wang Y; Zhang Y; Zhou Y; Zhuo S
    J Colloid Interface Sci; 2020 Mar; 561():601-608. PubMed ID: 31761466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced photocatalytic activity of graphitic carbon nitride/carbon nanotube/Bi
    Jiang D; Ma W; Xiao P; Shao L; Li D; Chen M
    J Colloid Interface Sci; 2018 Feb; 512():693-700. PubMed ID: 29107920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of confinement inside carbon nanotubes on catalysis.
    Pan X; Bao X
    Acc Chem Res; 2011 Aug; 44(8):553-62. PubMed ID: 21707038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the effects of carbon nanoreactor diameter and internal structure on the pathways of the catalytic hydrosilylation reaction.
    Solomonsz WA; Rance GA; Khlobystov AN
    Small; 2014 May; 10(9):1866-72. PubMed ID: 24914447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling activation barrier by carbon nanotubes as nano-chemical reactors.
    Méjri A; Picaud F; El Khalifi M; Gharbi T; Tangour B
    J Mol Model; 2017 Aug; 23(8):229. PubMed ID: 28721537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-organic frameworks loaded on phosphorus-doped tubular carbon nitride for enhanced photocatalytic hydrogen production and amine oxidation.
    Liu J; Li Q; Xiao X; Li F; Zhao C; Sun Q; Qiao P; Zhou J; Wu J; Li B; Bao H; Jiang B
    J Colloid Interface Sci; 2021 May; 590():1-11. PubMed ID: 33517246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced wettability of long narrow carbon nanotubes in a double-walled hetero-structure: unraveling the effects of a boron nitride nanotube as the exterior.
    Foroutan M; Naeini VF; Ebrahimi M
    Phys Chem Chem Phys; 2019 Dec; 22(1):391-401. PubMed ID: 31821403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defect Etching in Carbon Nanotube Walls for Porous Carbon Nanoreactors: Implications for CO
    Astle MA; Weilhard A; Rance GA; LeMercier TM; Stoppiello CT; Norman LT; Fernandes JA; Khlobystov AN
    ACS Appl Nano Mater; 2022 Feb; 5(2):2075-2086. PubMed ID: 35571534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface chemistry-dependent activity and comparative investigation on the enhanced photocatalytic performance of graphitic carbon nitride modified with various nanocarbons.
    Liu Q; Zhou L; Gao J; Wang S; Liu L; Liu S
    J Colloid Interface Sci; 2020 Jun; 569():12-21. PubMed ID: 32097798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Embedding Carbon Nitride into a Covalent Organic Framework with Enhanced Photocatalysis Performance.
    Pan J; Guo L; Zhang S; Wang N; Jin S; Tan B
    Chem Asian J; 2018 Jul; 13(13):1674-1677. PubMed ID: 29709107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-Controlled Water Flow in Nanotube Membranes.
    Casanova S; Borg MK; Chew YMJ; Mattia D
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1689-1698. PubMed ID: 30543406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatially Confined Formation and Transformation of Nanocrystals within Nanometer-Sized Reaction Media.
    Kumar A; Jeon KW; Kumari N; Lee IS
    Acc Chem Res; 2018 Nov; 51(11):2867-2879. PubMed ID: 30346727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging Concepts in Carbon Nitride Organic Photocatalysis.
    Mazzanti S; Savateev A
    Chempluschem; 2020 Nov; 85(11):2499-2517. PubMed ID: 33215877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving carbon nitride photocatalysis by supramolecular preorganization of monomers.
    Shalom M; Inal S; Fettkenhauer C; Neher D; Antonietti M
    J Am Chem Soc; 2013 May; 135(19):7118-21. PubMed ID: 23647353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Embedded carbon in a carbon nitride hollow sphere for enhanced charge separation and photocatalytic water splitting.
    Luo L; Ma J; Zhu H; Tang J
    Nanoscale; 2020 Apr; 12(13):7339-7346. PubMed ID: 32202586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Photocatalytic Activity of Aerogel Composed of Crooked Carbon Nitride Nanolayers with Nitrogen Vacancies.
    Zhang B; Zhao TJ; Wang HH
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):34922-34929. PubMed ID: 31476855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.