These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 33822601)

  • 1. Renewable Polyurethanes from Sustainable Biological Precursors.
    Phung Hai TA; Tessman M; Neelakantan N; Samoylov AA; Ito Y; Rajput BS; Pourahmady N; Burkart MD
    Biomacromolecules; 2021 May; 22(5):1770-1794. PubMed ID: 33822601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Innovations in applications and prospects of non-isocyanate polyurethane bioplastics.
    Mangal M; H S; Bose S; Banerjee T
    Biopolymers; 2023 Dec; 114(12):e23568. PubMed ID: 37846654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyols and polyurethanes from the liquefaction of lignocellulosic biomass.
    Hu S; Luo X; Li Y
    ChemSusChem; 2014 Jan; 7(1):66-72. PubMed ID: 24357542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lignin-Based Polyurethane: Recent Advances and Future Perspectives.
    Ma X; Chen J; Zhu J; Yan N
    Macromol Rapid Commun; 2021 Feb; 42(3):e2000492. PubMed ID: 33205584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recycling of polyurethanes from laboratory to industry, a journey towards the sustainability.
    Simón D; Borreguero AM; de Lucas A; Rodríguez JF
    Waste Manag; 2018 Jun; 76():147-171. PubMed ID: 29625876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances in Environment-Friendly Polyurethanes from Polyols Recovered from the Recycling and Renewable Resources: A Review.
    Pu M; Fang C; Zhou X; Wang D; Lin Y; Lei W; Li L
    Polymers (Basel); 2024 Jul; 16(13):. PubMed ID: 39000744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green Polyurethanes from Renewable Isocyanates and Biobased White Dextrins.
    Konieczny J; Loos K
    Polymers (Basel); 2019 Feb; 11(2):. PubMed ID: 30960240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of Plant Oils for Sustainable Polyurethane Adhesives: A Review.
    Ciastowicz Ż; Pamuła R; Białowiec A
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From the Synthesis of Biobased Cyclic Carbonate to Polyhydroxyurethanes: A Promising Route towards Renewable Non-Isocyanate Polyurethanes.
    Carré C; Ecochard Y; Caillol S; Avérous L
    ChemSusChem; 2019 Aug; 12(15):3410-3430. PubMed ID: 31099968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyurethane Coatings Based on Renewable White Dextrins and Isocyanate Trimers.
    Konieczny J; Loos K
    Macromol Rapid Commun; 2019 May; 40(10):e1800874. PubMed ID: 30730069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replacing fossil oil with fresh oil - with what and for what?
    Carlsson AS; Yilmaz JL; Green AG; Stymne S; Hofvander P
    Eur J Lipid Sci Technol; 2011 Jul; 113(7):812-831. PubMed ID: 22102794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustainable cycloaliphatic polyurethanes: from synthesis to applications.
    Mouren A; Avérous L
    Chem Soc Rev; 2023 Jan; 52(1):277-317. PubMed ID: 36520183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renewable non-isocyanate based thermoplastic polyurethanes via polycondensation of dimethyl carbamate monomers with diols.
    Unverferth M; Kreye O; Prohammer A; Meier MA
    Macromol Rapid Commun; 2013 Oct; 34(19):1569-74. PubMed ID: 23996909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward Circular Recycling of Polyurethanes: Depolymerization and Recovery of Isocyanates.
    O'Dea RM; Nandi M; Kroll G; Arnold JR; Korley LTJ; Epps TH
    JACS Au; 2024 Apr; 4(4):1471-1479. PubMed ID: 38665666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatty acid-derived diisocyanate and biobased polyurethane produced from vegetable oil: synthesis, polymerization, and characterization.
    Hojabri L; Kong X; Narine SS
    Biomacromolecules; 2009 Apr; 10(4):884-91. PubMed ID: 19281152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable Polyurethane Derived from Hydroxylated Polylactide with Superior Mechanical Properties.
    Li X; Lin Y; Zhao C; Meng N; Bai Y; Wang X; Yu J; Ding B
    Polymers (Basel); 2024 Jun; 16(13):. PubMed ID: 39000664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All-Natural Plant-Derived Polyurethane as a Substitute of a Petroleum-Based Polymer Coating Material.
    Yang M; Zhang J; Sun Z; Sun D
    J Agric Food Chem; 2024 Mar; 72(12):6444-6453. PubMed ID: 38502525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upgrading Sustainable Polyurethane Foam Based on Greener Polyols: Succinic-Based Polyol and Mannich-Based Polyol.
    de Luca Bossa F; Verdolotti L; Russo V; Campaner P; Minigher A; Lama GC; Boggioni L; Tesser R; Lavorgna M
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32708562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of epoxidized vegetable oils: a novel method to prepare bio-based polyols for polyurethanes.
    Zhang C; Ding R; Kessler MR
    Macromol Rapid Commun; 2014 Jun; 35(11):1068-74. PubMed ID: 24668919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonedible Vegetable Oil-Based Polyols in Anticorrosive and Antimicrobial Polyurethane Coatings.
    Patil CK; Jung DW; Jirimali HD; Baik JH; Gite VV; Hong SC
    Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34578051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.