These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 33822870)
1. ATSE: a peptide toxicity predictor by exploiting structural and evolutionary information based on graph neural network and attention mechanism. Wei L; Ye X; Xue Y; Sakurai T; Wei L Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822870 [TBL] [Abstract][Full Text] [Related]
2. sAMPpred-GAT: prediction of antimicrobial peptide by graph attention network and predicted peptide structure. Yan K; Lv H; Guo Y; Peng W; Liu B Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36342186 [TBL] [Abstract][Full Text] [Related]
3. PSSP-MVIRT: peptide secondary structure prediction based on a multi-view deep learning architecture. Cao X; He W; Chen Z; Li Y; Wang K; Zhang H; Wei L; Cui L; Su R; Wei L Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34117740 [TBL] [Abstract][Full Text] [Related]
4. Fast Prediction of Protein Methylation Sites Using a Sequence-Based Feature Selection Technique. Wei L; Xing P; Shi G; Ji Z; Zou Q IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1264-1273. PubMed ID: 28222000 [TBL] [Abstract][Full Text] [Related]
5. Learning embedding features based on multisense-scaled attention architecture to improve the predictive performance of anticancer peptides. He W; Wang Y; Cui L; Su R; Wei L Bioinformatics; 2021 Dec; 37(24):4684-4693. PubMed ID: 34323948 [TBL] [Abstract][Full Text] [Related]
6. ACPred-FL: a sequence-based predictor using effective feature representation to improve the prediction of anti-cancer peptides. Wei L; Zhou C; Chen H; Song J; Su R Bioinformatics; 2018 Dec; 34(23):4007-4016. PubMed ID: 29868903 [TBL] [Abstract][Full Text] [Related]
7. ACPred-Fuse: fusing multi-view information improves the prediction of anticancer peptides. Rao B; Zhou C; Zhang G; Su R; Wei L Brief Bioinform; 2020 Sep; 21(5):1846-1855. PubMed ID: 31729528 [TBL] [Abstract][Full Text] [Related]
8. EmbedDTI: Enhancing the Molecular Representations via Sequence Embedding and Graph Convolutional Network for the Prediction of Drug-Target Interaction. Jin Y; Lu J; Shi R; Yang Y Biomolecules; 2021 Nov; 11(12):. PubMed ID: 34944427 [TBL] [Abstract][Full Text] [Related]
9. ToxDL: deep learning using primary structure and domain embeddings for assessing protein toxicity. Pan X; Zuallaert J; Wang X; Shen HB; Campos EP; Marushchak DO; De Neve W Bioinformatics; 2021 Jan; 36(21):5159-5168. PubMed ID: 32692832 [TBL] [Abstract][Full Text] [Related]
10. ACP-MHCNN: an accurate multi-headed deep-convolutional neural network to predict anticancer peptides. Ahmed S; Muhammod R; Khan ZH; Adilina S; Sharma A; Shatabda S; Dehzangi A Sci Rep; 2021 Dec; 11(1):23676. PubMed ID: 34880291 [TBL] [Abstract][Full Text] [Related]
11. ToxIBTL: prediction of peptide toxicity based on information bottleneck and transfer learning. Wei L; Ye X; Sakurai T; Mu Z; Wei L Bioinformatics; 2022 Mar; 38(6):1514-1524. PubMed ID: 34999757 [TBL] [Abstract][Full Text] [Related]
12. Prediction of Peptide Detectability Based on CapsNet and Convolutional Block Attention Module. Yu M; Duan Y; Li Z; Zhang Y Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769509 [TBL] [Abstract][Full Text] [Related]
14. PEPred-Suite: improved and robust prediction of therapeutic peptides using adaptive feature representation learning. Wei L; Zhou C; Su R; Zou Q Bioinformatics; 2019 Nov; 35(21):4272-4280. PubMed ID: 30994882 [TBL] [Abstract][Full Text] [Related]
15. ELASPIC2 (EL2): Combining Contextualized Language Models and Graph Neural Networks to Predict Effects of Mutations. Strokach A; Lu TY; Kim PM J Mol Biol; 2021 May; 433(11):166810. PubMed ID: 33450251 [TBL] [Abstract][Full Text] [Related]
16. AutoPeptideML: a study on how to build more trustworthy peptide bioactivity predictors. Fernández-Díaz R; Cossio-Pérez R; Agoni C; Lam HT; Lopez V; Shields DC Bioinformatics; 2024 Sep; 40(9):. PubMed ID: 39292535 [TBL] [Abstract][Full Text] [Related]
17. PreTP-EL: prediction of therapeutic peptides based on ensemble learning. Guo Y; Yan K; Lv H; Liu B Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34459488 [TBL] [Abstract][Full Text] [Related]
18. Pfeature: A Tool for Computing Wide Range of Protein Features and Building Prediction Models. Pande A; Patiyal S; Lathwal A; Arora C; Kaur D; Dhall A; Mishra G; Kaur H; Sharma N; Jain S; Usmani SS; Agrawal P; Kumar R; Kumar V; Raghava GPS J Comput Biol; 2023 Feb; 30(2):204-222. PubMed ID: 36251780 [TBL] [Abstract][Full Text] [Related]
19. TP-LMMSG: a peptide prediction graph neural network incorporating flexible amino acid property representation. Chen N; Yu J; Zhe L; Wang F; Li X; Wong KC Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38920345 [TBL] [Abstract][Full Text] [Related]
20. TrimNet: learning molecular representation from triplet messages for biomedicine. Li P; Li Y; Hsieh CY; Zhang S; Liu X; Liu H; Song S; Yao X Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33147620 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]