These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 33822870)

  • 21. In silico approach for predicting toxicity of peptides and proteins.
    Gupta S; Kapoor P; Chaudhary K; Gautam A; Kumar R; ; Raghava GP
    PLoS One; 2013; 8(9):e73957. PubMed ID: 24058508
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SEP-AlgPro: An efficient allergen prediction tool utilizing traditional machine learning and deep learning techniques with protein language model features.
    Basith S; Pham NT; Manavalan B; Lee G
    Int J Biol Macromol; 2024 Jul; 273(Pt 2):133085. PubMed ID: 38871100
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CELA-MFP: a contrast-enhanced and label-adaptive framework for multi-functional therapeutic peptides prediction.
    Fang Y; Luo M; Ren Z; Wei L; Wei DQ
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 39038935
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Graph-based prediction of Protein-protein interactions with attributed signed graph embedding.
    Yang F; Fan K; Song D; Lin H
    BMC Bioinformatics; 2020 Jul; 21(1):323. PubMed ID: 32693790
    [TBL] [Abstract][Full Text] [Related]  

  • 25. HGDTI: predicting drug-target interaction by using information aggregation based on heterogeneous graph neural network.
    Yu L; Qiu W; Lin W; Cheng X; Xiao X; Dai J
    BMC Bioinformatics; 2022 Apr; 23(1):126. PubMed ID: 35413800
    [TBL] [Abstract][Full Text] [Related]  

  • 26. VISH-Pred: an ensemble of fine-tuned ESM models for protein toxicity prediction.
    Mall R; Singh A; Patel CN; Guirimand G; Castiglione F
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38842509
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Peptide toxicity prediction.
    Gupta S; Kapoor P; Chaudhary K; Gautam A; Kumar R; Raghava GP
    Methods Mol Biol; 2015; 1268():143-57. PubMed ID: 25555724
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automatic construction of molecular similarity networks for visual graph mining in chemical space of bioactive peptides: an unsupervised learning approach.
    Aguilera-Mendoza L; Marrero-Ponce Y; GarcĂ­a-Jacas CR; Chavez E; Beltran JA; Guillen-Ramirez HA; Brizuela CA
    Sci Rep; 2020 Oct; 10(1):18074. PubMed ID: 33093586
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Network-based drug sensitivity prediction.
    Ahmed KT; Park S; Jiang Q; Yeu Y; Hwang T; Zhang W
    BMC Med Genomics; 2020 Dec; 13(Suppl 11):193. PubMed ID: 33371891
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neuro-symbolic representation learning on biological knowledge graphs.
    Alshahrani M; Khan MA; Maddouri O; Kinjo AR; Queralt-Rosinach N; Hoehndorf R
    Bioinformatics; 2017 Sep; 33(17):2723-2730. PubMed ID: 28449114
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SkipCPP-Pred: an improved and promising sequence-based predictor for predicting cell-penetrating peptides.
    Wei L; Tang J; Zou Q
    BMC Genomics; 2017 Oct; 18(Suppl 7):742. PubMed ID: 29513192
    [TBL] [Abstract][Full Text] [Related]  

  • 32. BioSeq-Analysis: a platform for DNA, RNA and protein sequence analysis based on machine learning approaches.
    Liu B
    Brief Bioinform; 2019 Jul; 20(4):1280-1294. PubMed ID: 29272359
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SME-MFP: A novel spatiotemporal neural network with multiangle initialization embedding toward multifunctional peptides prediction.
    Xu J; Ruan X; Yang J; Hu B; Li S; Hu J
    Comput Biol Chem; 2024 Apr; 109():108033. PubMed ID: 38412804
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hum-mPLoc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features.
    Zhou H; Yang Y; Shen HB
    Bioinformatics; 2017 Mar; 33(6):843-853. PubMed ID: 27993784
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploiting heterogeneous features to improve in silico prediction of peptide status - amyloidogenic or non-amyloidogenic.
    Nair SS; Subba Reddy NV; Hareesha KS
    BMC Bioinformatics; 2011; 12 Suppl 13(Suppl 13):S21. PubMed ID: 22373069
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrated convolution and self-attention for improving peptide toxicity prediction.
    Jiao S; Ye X; Sakurai T; Zou Q; Liu R
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38696758
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploring sequence-based features for the improved prediction of DNA N4-methylcytosine sites in multiple species.
    Wei L; Luan S; Nagai LAE; Su R; Zou Q
    Bioinformatics; 2019 Apr; 35(8):1326-1333. PubMed ID: 30239627
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modular prediction of protein structural classes from sequences of twilight-zone identity with predicting sequences.
    Mizianty MJ; Kurgan L
    BMC Bioinformatics; 2009 Dec; 10():414. PubMed ID: 20003388
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative analysis and prediction of quorum-sensing peptides using feature representation learning and machine learning algorithms.
    Wei L; Hu J; Li F; Song J; Su R; Zou Q
    Brief Bioinform; 2020 Jan; 21(1):106-119. PubMed ID: 30383239
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NetGO: improving large-scale protein function prediction with massive network information.
    You R; Yao S; Xiong Y; Huang X; Sun F; Mamitsuka H; Zhu S
    Nucleic Acids Res; 2019 Jul; 47(W1):W379-W387. PubMed ID: 31106361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.