These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 33822893)
1. Rank normalization empowers a t-test for microbiome differential abundance analysis while controlling for false discoveries. Davis ML; Huang Y; Wang K Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822893 [TBL] [Abstract][Full Text] [Related]
2. Large-scale benchmarking reveals false discoveries and count transformation sensitivity in 16S rRNA gene amplicon data analysis methods used in microbiome studies. Thorsen J; Brejnrod A; Mortensen M; Rasmussen MA; Stokholm J; Al-Soud WA; Sørensen S; Bisgaard H; Waage J Microbiome; 2016 Nov; 4(1):62. PubMed ID: 27884206 [TBL] [Abstract][Full Text] [Related]
3. Normalization and microbial differential abundance strategies depend upon data characteristics. Weiss S; Xu ZZ; Peddada S; Amir A; Bittinger K; Gonzalez A; Lozupone C; Zaneveld JR; Vázquez-Baeza Y; Birmingham A; Hyde ER; Knight R Microbiome; 2017 Mar; 5(1):27. PubMed ID: 28253908 [TBL] [Abstract][Full Text] [Related]
4. An empirical Bayes approach to normalization and differential abundance testing for microbiome data. Liu T; Zhao H; Wang T BMC Bioinformatics; 2020 Jun; 21(1):225. PubMed ID: 32493208 [TBL] [Abstract][Full Text] [Related]
5. A novel normalization and differential abundance test framework for microbiome data. Ma Y; Luo Y; Jiang H Bioinformatics; 2020 Jul; 36(13):3959-3965. PubMed ID: 32311021 [TBL] [Abstract][Full Text] [Related]
6. Colorectal Cancer and the Human Gut Microbiome: Reproducibility with Whole-Genome Shotgun Sequencing. Vogtmann E; Hua X; Zeller G; Sunagawa S; Voigt AY; Hercog R; Goedert JJ; Shi J; Bork P; Sinha R PLoS One; 2016; 11(5):e0155362. PubMed ID: 27171425 [TBL] [Abstract][Full Text] [Related]
7. A realistic benchmark for differential abundance testing and confounder adjustment in human microbiome studies. Wirbel J; Essex M; Forslund SK; Zeller G Genome Biol; 2024 Sep; 25(1):247. PubMed ID: 39322959 [TBL] [Abstract][Full Text] [Related]
8. Systematically assessing microbiome-disease associations identifies drivers of inconsistency in metagenomic research. Tierney BT; Tan Y; Yang Z; Shui B; Walker MJ; Kent BM; Kostic AD; Patel CJ PLoS Biol; 2022 Mar; 20(3):e3001556. PubMed ID: 35235560 [TBL] [Abstract][Full Text] [Related]
9. Transformation and differential abundance analysis of microbiome data incorporating phylogeny. Zhou C; Zhao H; Wang T Bioinformatics; 2021 Dec; 37(24):4652-4660. PubMed ID: 34302462 [TBL] [Abstract][Full Text] [Related]
10. Tutorial: assessing metagenomics software with the CAMI benchmarking toolkit. Meyer F; Lesker TR; Koslicki D; Fritz A; Gurevich A; Darling AE; Sczyrba A; Bremges A; McHardy AC Nat Protoc; 2021 Apr; 16(4):1785-1801. PubMed ID: 33649565 [TBL] [Abstract][Full Text] [Related]
11. A comprehensive human minimal gut metagenome extends the host's metabolic potential. Parras-Moltó M; Aguirre de Cárcer D Microb Genom; 2020 Nov; 6(11):. PubMed ID: 33141656 [TBL] [Abstract][Full Text] [Related]
12. Comparison of reduced metagenome and 16S rRNA gene sequencing for determination of genetic diversity and mother-child overlap of the gut associated microbiota. Ravi A; Avershina E; Angell IL; Ludvigsen J; Manohar P; Padmanaban S; Nachimuthu R; Snipen L; Rudi K J Microbiol Methods; 2018 Jun; 149():44-52. PubMed ID: 29501688 [TBL] [Abstract][Full Text] [Related]
13. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification. Ziesemer KA; Mann AE; Sankaranarayanan K; Schroeder H; Ozga AT; Brandt BW; Zaura E; Waters-Rist A; Hoogland M; Salazar-García DC; Aldenderfer M; Speller C; Hendy J; Weston DA; MacDonald SJ; Thomas GH; Collins MJ; Lewis CM; Hofman C; Warinner C Sci Rep; 2015 Nov; 5():16498. PubMed ID: 26563586 [TBL] [Abstract][Full Text] [Related]
14. Clustering co-abundant genes identifies components of the gut microbiome that are reproducibly associated with colorectal cancer and inflammatory bowel disease. Minot SS; Willis AD Microbiome; 2019 Aug; 7(1):110. PubMed ID: 31370880 [TBL] [Abstract][Full Text] [Related]
15. Diversity and composition of gut microbiome of cervical cancer patients: Do results of 16S rRNA sequencing and whole genome sequencing approaches align? Biegert G; El Alam MB; Karpinets T; Wu X; Sims TT; Yoshida-Court K; Lynn EJ; Yue J; Medrano AD; Petrosino J; Mezzari MP; Ajami NJ; Solley T; Ahmed-Kaddar M; Klopp AH; Colbert LE J Microbiol Methods; 2021 Jun; 185():106213. PubMed ID: 33785357 [TBL] [Abstract][Full Text] [Related]
16. Covariation of the Fecal Microbiome with Diet in Nonpasserine Birds. Xiao K; Fan Y; Zhang Z; Shen X; Li X; Liang X; Bi R; Wu Y; Zhai J; Dai J; Irwin DM; Chen W; Shen Y mSphere; 2021 May; 6(3):. PubMed ID: 33980682 [TBL] [Abstract][Full Text] [Related]
17. Quantitative Assessment of Shotgun Metagenomics and 16S rDNA Amplicon Sequencing in the Study of Human Gut Microbiome. Laudadio I; Fulci V; Palone F; Stronati L; Cucchiara S; Carissimi C OMICS; 2018 Apr; 22(4):248-254. PubMed ID: 29652573 [TBL] [Abstract][Full Text] [Related]
18. Microbiome Analysis Reveals Diversity and Function of Pimentel ZT; Dufault-Thompson K; Russo KT; Scro AK; Smolowitz RM; Gomez-Chiarri M; Zhang Y mSphere; 2021 May; 6(3):. PubMed ID: 33980678 [TBL] [Abstract][Full Text] [Related]
19. Molecular Analysis of the Microbiome in Colorectal Cancer. Clegg F; Berry SH; Hansen R; Hold GL Methods Mol Biol; 2018; 1765():139-153. PubMed ID: 29589305 [TBL] [Abstract][Full Text] [Related]
20. Faecal microbiome sequences in relation to the egg-laying performance of hens using amplicon-based metagenomic association analysis. Elokil AA; Magdy M; Melak S; Ishfaq H; Bhuiyan A; Cui L; Jamil M; Zhao S; Li S Animal; 2020 Apr; 14(4):706-715. PubMed ID: 31619307 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]