BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 33822909)

  • 1. Development of Individual Variability in Brain Functional Connectivity and Capability across the Adult Lifespan.
    Ma L; Tian L; Hu T; Jiang T; Zuo N
    Cereb Cortex; 2021 Jul; 31(8):3925-3938. PubMed ID: 33822909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Moment-to-Moment BOLD Signal Variability Reflects Regional Changes in Neural Flexibility across the Lifespan.
    Nomi JS; Bolt TS; Ezie CEC; Uddin LQ; Heller AS
    J Neurosci; 2017 May; 37(22):5539-5548. PubMed ID: 28473644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity and Connectivity Differences Underlying Inhibitory Control Across the Adult Life Span.
    Tsvetanov KA; Ye Z; Hughes L; Samu D; Treder MS; Wolpe N; Tyler LK; Rowe JB;
    J Neurosci; 2018 Sep; 38(36):7887-7900. PubMed ID: 30049889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alterations of local functional connectivity in lifespan: A resting-state fMRI study.
    Wen X; He H; Dong L; Chen J; Yang J; Guo H; Luo C; Yao D
    Brain Behav; 2020 Jul; 10(7):e01652. PubMed ID: 32462815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. State and Trait Components of Functional Connectivity: Individual Differences Vary with Mental State.
    Geerligs L; Rubinov M; Cam-Can ; Henson RN
    J Neurosci; 2015 Oct; 35(41):13949-61. PubMed ID: 26468196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping individual differences across brain network structure to function and behavior with connectome embedding.
    Levakov G; Faskowitz J; Avidan G; Sporns O
    Neuroimage; 2021 Nov; 242():118469. PubMed ID: 34390875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of neural flexibility in cognitive aging.
    Varangis E; Qi W; Stern Y; Lee S
    Neuroimage; 2022 Feb; 247():118784. PubMed ID: 34902547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional connectivity between somatosensory and motor brain areas predicts individual differences in motor learning by observing.
    McGregor HR; Gribble PL
    J Neurophysiol; 2017 Aug; 118(2):1235-1243. PubMed ID: 28566463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lifespan differences in cortico-striatal resting state connectivity.
    Bo J; Lee CM; Kwak Y; Peltier SJ; Bernard JA; Buschkuehl M; Jaeggi SM; Wiggins JL; Jonides J; Monk CS; Seidler RD
    Brain Connect; 2014 Apr; 4(3):166-80. PubMed ID: 24575740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A combined diffusion-weighted and electroencephalography study on age-related differences in connectivity in the motor network during bimanual performance.
    Babaeeghazvini P; Rueda-Delgado LM; Zivari Adab H; Gooijers J; Swinnen S; Daffertshofer A
    Hum Brain Mapp; 2019 Apr; 40(6):1799-1813. PubMed ID: 30588749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of spatial and temporal features of functional brain networks across the lifespan.
    Vij SG; Nomi JS; Dajani DR; Uddin LQ
    Neuroimage; 2018 Jun; 173():498-508. PubMed ID: 29518568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased sensitivity to age-related differences in brain functional connectivity during continuous multiple object tracking compared to resting-state.
    Dørum ES; Kaufmann T; Alnæs D; Andreassen OA; Richard G; Kolskår KK; Nordvik JE; Westlye LT
    Neuroimage; 2017 Mar; 148():364-372. PubMed ID: 28111190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aging effects on the resting state motor network and interlimb coordination.
    Solesio-Jofre E; Serbruyns L; Woolley DG; Mantini D; Beets IA; Swinnen SP
    Hum Brain Mapp; 2014 Aug; 35(8):3945-61. PubMed ID: 24453170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Network-specific differences in transient brain activity at rest are associated with age-related reductions in motor performance.
    Monteiro TS; King BR; Seer C; Mantini D; Swinnen SP
    Neuroimage; 2022 May; 252():119025. PubMed ID: 35202812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Joint embedding: A scalable alignment to compare individuals in a connectivity space.
    Nenning KH; Xu T; Schwartz E; Arroyo J; Woehrer A; Franco AR; Vogelstein JT; Margulies DS; Liu H; Smallwood J; Milham MP; Langs G
    Neuroimage; 2020 Nov; 222():117232. PubMed ID: 32771618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Connectome-based models predict attentional control in aging adults.
    Fountain-Zaragoza S; Samimy S; Rosenberg MD; Prakash RS
    Neuroimage; 2019 Feb; 186():1-13. PubMed ID: 30394324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-Related Compensatory Reconfiguration of PFC Connections during Episodic Memory Retrieval.
    Deng L; Stanley ML; Monge ZA; Wing EA; Geib BR; Davis SW; Cabeza R
    Cereb Cortex; 2021 Jan; 31(2):717-730. PubMed ID: 32710101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Longitudinal Study of Changes in Resting-State Functional Magnetic Resonance Imaging Functional Connectivity Networks During Healthy Aging.
    Oschmann M; Gawryluk JR
    Brain Connect; 2020 Sep; 10(7):377-384. PubMed ID: 32623915
    [No Abstract]   [Full Text] [Related]  

  • 19. Lifespan differences in visual short-term memory load-modulated functional connectivity.
    Lugtmeijer S; Geerligs L; Tsvetanov KA; Mitchell DJ; Cam-Can ; Campbell KL
    Neuroimage; 2023 Apr; 270():119982. PubMed ID: 36848967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in structural and functional connectivity among resting-state networks across the human lifespan.
    Betzel RF; Byrge L; He Y; Goñi J; Zuo XN; Sporns O
    Neuroimage; 2014 Nov; 102 Pt 2():345-57. PubMed ID: 25109530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.