These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 33823041)

  • 1. Tree physiological responses after biotic and abiotic disturbances revealed by a dual isotope approach.
    Saurer M; Cherubini P
    Tree Physiol; 2022 Jan; 42(1):1-4. PubMed ID: 33823041
    [No Abstract]   [Full Text] [Related]  

  • 2. Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement.
    Harfouche A; Meilan R; Altman A
    Tree Physiol; 2014 Nov; 34(11):1181-98. PubMed ID: 24695726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contrasting controls on tree ring isotope variation for Amazon floodplain and terra firme trees.
    Barçante Ladvocat Cintra B; Gloor M; Boom A; Schöngart J; Locosselli GM; Brienen R
    Tree Physiol; 2019 May; 39(5):845-860. PubMed ID: 30824929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant Immune System: Crosstalk Between Responses to Biotic and Abiotic Stresses the Missing Link in Understanding Plant Defence.
    Nejat N; Mantri N
    Curr Issues Mol Biol; 2017; 23():1-16. PubMed ID: 28154243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential expression of microRNAs and their targets reveals a possible dual role in physiological bark disorder in rubber tree.
    Lertpanyasampatha M; Viboonjun U; Kongsawadworakul P; Chrestin H; Narangajavana J
    J Plant Physiol; 2014 Aug; 171(13):1117-26. PubMed ID: 24973583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The unknown third - Hydrogen isotopes in tree-ring cellulose across Europe.
    Vitali V; Martínez-Sancho E; Treydte K; Andreu-Hayles L; Dorado-Liñán I; Gutierrez E; Helle G; Leuenberger M; Loader NJ; Rinne-Garmston KT; Schleser GH; Allen S; Waterhouse JS; Saurer M; Lehmann MM
    Sci Total Environ; 2022 Mar; 813():152281. PubMed ID: 34942249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An update on redox signals in plant responses to biotic and abiotic stress crosstalk: insights from cadmium and fungal pathogen interactions.
    Romero-Puertas MC; Terrón-Camero LC; Peláez-Vico MÁ; Molina-Moya E; Sandalio LM
    J Exp Bot; 2021 Aug; 72(16):5857-5875. PubMed ID: 34111283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Meta-transcriptomics indicates biotic cross-tolerance in willow trees cultivated on petroleum hydrocarbon contaminated soil.
    Gonzalez E; Brereton NJ; Marleau J; Guidi Nissim W; Labrecque M; Pitre FE; Joly S
    BMC Plant Biol; 2015 Oct; 15():246. PubMed ID: 26459343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide analysis of the WRKY gene family in the cucumber genome and transcriptome-wide identification of WRKY transcription factors that respond to biotic and abiotic stresses.
    Chen C; Chen X; Han J; Lu W; Ren Z
    BMC Plant Biol; 2020 Sep; 20(1):443. PubMed ID: 32977756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methylglyoxal detoxification by a DJ-1 family protein provides dual abiotic and biotic stress tolerance in transgenic plants.
    Melvin P; Bankapalli K; D'Silva P; Shivaprasad PV
    Plant Mol Biol; 2017 Jul; 94(4-5):381-397. PubMed ID: 28444544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vascular plant one-zinc-finger protein 1/2 transcription factors regulate abiotic and biotic stress responses in Arabidopsis.
    Nakai Y; Nakahira Y; Sumida H; Takebayashi K; Nagasawa Y; Yamasaki K; Akiyama M; Ohme-Takagi M; Fujiwara S; Shiina T; Mitsuda N; Fukusaki E; Kubo Y; Sato MH
    Plant J; 2013 Mar; 73(5):761-75. PubMed ID: 23167462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antagonistic, overlapping and distinct responses to biotic stress in rice (Oryza sativa) and interactions with abiotic stress.
    Narsai R; Wang C; Chen J; Wu J; Shou H; Whelan J
    BMC Genomics; 2013 Feb; 14():93. PubMed ID: 23398910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning approaches distinguish multiple stress conditions using stress-responsive genes and identify candidate genes for broad resistance in rice.
    Shaik R; Ramakrishna W
    Plant Physiol; 2014 Jan; 164(1):481-95. PubMed ID: 24235132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Arabidopsis candidate genes in response to biotic and abiotic stresses using comparative microarrays.
    Sham A; Moustafa K; Al-Ameri S; Al-Azzawi A; Iratni R; AbuQamar S
    PLoS One; 2015; 10(5):e0125666. PubMed ID: 25933420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-frequency stable isotope signals in uneven-aged forests as proxy for physiological responses to climate in Central Europe.
    Vitali V; Klesse S; Weigt R; Treydte K; Frank D; Saurer M; Siegwolf RTW
    Tree Physiol; 2021 Nov; 41(11):2046-2062. PubMed ID: 33960372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tree-ring δ13C and δ18O, leaf δ13C and wood and leaf N status demonstrate tree growth strategies and predict susceptibility to disturbance.
    Billings SA; Boone AS; Stephen FM
    Tree Physiol; 2016 May; 36(5):576-88. PubMed ID: 26960389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interaction of plant biotic and abiotic stresses: from genes to the field.
    Atkinson NJ; Urwin PE
    J Exp Bot; 2012 Jun; 63(10):3523-43. PubMed ID: 22467407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide alternative polyadenylation dynamics in response to biotic and abiotic stresses in rice.
    Ye C; Zhou Q; Wu X; Ji G; Li QQ
    Ecotoxicol Environ Saf; 2019 Nov; 183():109485. PubMed ID: 31376807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Insights into Tree Biology and Genome Evolution as Revealed Through Genomics.
    Neale DB; Martínez-García PJ; De La Torre AR; Montanari S; Wei XX
    Annu Rev Plant Biol; 2017 Apr; 68():457-483. PubMed ID: 28226237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tree-ring stable isotopes indicate mass wasting processes at Radicofani in the upper Orcia Valley (Tuscany, Italy).
    Leonelli G; Bollati IM; Cherubini P; Saurer M; Vergari F; Del Monte M; Pelfini M
    Sci Total Environ; 2022 Mar; 812():152428. PubMed ID: 34942253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.