These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 33823059)

  • 1. Blunted cerebrovascular CO
    Caldwell HG
    J Physiol; 2021 May; 599(10):2513-2515. PubMed ID: 33823059
    [No Abstract]   [Full Text] [Related]  

  • 2. Influence of the mode of heating on cerebral blood flow, non-invasive intracranial pressure and thermal tolerance in humans.
    Gibbons TD; Ainslie PN; Thomas KN; Wilson LC; Akerman AP; Donnelly J; Campbell HA; Cotter JD
    J Physiol; 2021 Apr; 599(7):1977-1996. PubMed ID: 33586133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperthermia modulates regional differences in cerebral blood flow to changes in CO2.
    Ogoh S; Sato K; Okazaki K; Miyamoto T; Hirasawa A; Shibasaki M
    J Appl Physiol (1985); 2014 Jul; 117(1):46-52. PubMed ID: 24790021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebrovascular carbon dioxide reactivity in sheep: effect of propofol or isoflurane anaesthesia.
    Myburgh JA; Upton RN; Ludbrook GL; Martinez A; Grant C
    Anaesth Intensive Care; 2002 Aug; 30(4):413-21. PubMed ID: 12180577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Doppler CO2 test as an indicator of cerebral vasoreactivity and prognosis in severe intracranial hemorrhages.
    Klingelhöfer J; Sander D
    Stroke; 1992 Jul; 23(7):962-6. PubMed ID: 1615545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variability in orthostatic tolerance during heat stress: cerebrovascular reactivity to arterial carbon dioxide.
    Lee JF; Christmas KM; Harrison ML; Hurr C; Kim K; Brothers RM
    Aviat Space Environ Med; 2014 Jun; 85(6):624-30. PubMed ID: 24919383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mode of passive heating differentially modifies cerebral hemodynamics: Potential implications on heat therapy.
    Worley ML; Reed EL; Freemas JA; Chapman CL
    J Physiol; 2021 Jun; 599(11):2789-2790. PubMed ID: 33760233
    [No Abstract]   [Full Text] [Related]  

  • 8. Interaction among autoregulation, CO2 reactivity, and intracranial pressure: a mathematical model.
    Ursino M; Lodi CA
    Am J Physiol; 1998 May; 274(5):H1715-28. PubMed ID: 9612384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of alterations in arterial CO2 tension on cerebral blood flow during acute intracranial hypertension in rats.
    Hauerberg J; Ma X; Bay-Hansen R; Pedersen DB; Rochat P; Juhler M
    J Neurosurg Anesthesiol; 2001 Jul; 13(3):213-21. PubMed ID: 11426095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon dioxide reactivity, pressure autoregulation, and metabolic suppression reactivity after head injury: a transcranial Doppler study.
    Lee JH; Kelly DF; Oertel M; McArthur DL; Glenn TC; Vespa P; Boscardin WJ; Martin NA
    J Neurosurg; 2001 Aug; 95(2):222-32. PubMed ID: 11780891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dietary nitrate supplementation enhances cerebrovascular CO
    Fan JL; O'Donnell T; Gray CL; Croft K; Noakes AK; Koch H; Tzeng YC
    J Appl Physiol (1985); 2019 Sep; 127(3):760-769. PubMed ID: 31318615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of graded experimental trauma on cerebral blood flow and responsiveness to CO2.
    Saunders ML; Miller JD; Stablein D; Allen G
    J Neurosurg; 1979 Jul; 51(1):18-26. PubMed ID: 448413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cerebrovascular CO2 reactivity during the acute phase of brain injury.
    Cold GE; Jensen FT; Malmros R
    Acta Anaesthesiol Scand; 1977; 21(3):222-31. PubMed ID: 17991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactivity of cerebral blood flow to carbon dioxide in hypertensive patients: evaluation by the transcranial Doppler method.
    Maeda H; Matsumoto M; Handa N; Hougaku H; Ogawa S; Itoh T; Tsukamoto Y; Kamada T
    J Hypertens; 1994 Feb; 12(2):191-7. PubMed ID: 7912703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The magnitude of heat stress-induced reductions in cerebral perfusion does not predict heat stress-induced reductions in tolerance to a simulated hemorrhage.
    Lee JF; Harrison ML; Brown SR; Brothers RM
    J Appl Physiol (1985); 2013 Jan; 114(1):37-44. PubMed ID: 23139368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes of the regional cerebral flood flow and cerebrovascular reactivity in intracranial tumours.
    Romodanov AP; Zozulia YA; Danilenko GS; Kovalenko NA; Kosinov AE; Spiridonova MV
    Eur Neurol; 1972; 8(1):122-3. PubMed ID: 4559478
    [No Abstract]   [Full Text] [Related]  

  • 17. Global ischemia in dogs: cerebrovascular CO2 reactivity and autoregulation.
    Nemoto EM; Snyder JV; Carroll RG; Morita H
    Stroke; 1975; 6(4):425-31. PubMed ID: 1154479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of sevoflurane on intracranial pressure, cerebral blood flow and cerebral metabolism. A dose-response study in patients subjected to craniotomy for cerebral tumours.
    Bundgaard H; von Oettingen G; Larsen KM; Landsfeldt U; Jensen KA; Nielsen E; Cold GE
    Acta Anaesthesiol Scand; 1998 Jul; 42(6):621-7. PubMed ID: 9689265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissociation between cerebral autoregulation and carbon dioxide reactivity during nonpulsatile cardiopulmonary bypass.
    Lundar T; Lindegaard KF; Frøysaker T; Aaslid R; Grip A; Nornes H
    Ann Thorac Surg; 1985 Dec; 40(6):582-7. PubMed ID: 3935068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compression garments do not alter cerebrovascular responses to orthostatic stress after mild passive heating.
    Morrison SA; Ainslie PN; Lucas RA; Cheung SS; Cotter JD
    Scand J Med Sci Sports; 2014 Apr; 24(2):291-300. PubMed ID: 22967715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.