BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 33823170)

  • 1. Thresholds for carcinogens.
    Calabrese EJ; Priest ND; Kozumbo WJ
    Chem Biol Interact; 2021 May; 341():109464. PubMed ID: 33823170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Are tumor incidence rates from chronic bioassays telling us what we need to know about carcinogens?
    Gaylor DW
    Regul Toxicol Pharmacol; 2005 Mar; 41(2):128-33. PubMed ID: 15698536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implications of hormesis on the bioassay and hazard assessment of chemical carcinogens.
    Teeguarden JG; Dragan YP; Pitot HC
    Hum Exp Toxicol; 1998 May; 17(5):254-8. PubMed ID: 9663932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hazard assessment of chemical carcinogens: the impact of hormesis.
    Teeguarden JG; Dragan Y; Pitot HC
    J Appl Toxicol; 2000; 20(2):113-20. PubMed ID: 10715608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulatory cancer risk assessment based on a quick estimate of a benchmark dose derived from the maximum tolerated dose.
    Gaylor DW; Swirsky Gold L
    Regul Toxicol Pharmacol; 1998 Dec; 28(3):222-5. PubMed ID: 10049793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Risk assessment of chemical carcinogens and thresholds.
    Neumann HG
    Crit Rev Toxicol; 2009; 39(6):449-61. PubMed ID: 19545196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carcinogenicity categorization of chemicals-new aspects to be considered in a European perspective.
    Bolt HM; Foth H; Hengstler JG; Degen GH
    Toxicol Lett; 2004 Jun; 151(1):29-41. PubMed ID: 15177638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Addressing nonlinearity in the exposure-response relationship for a genotoxic carcinogen: cancer potency estimates for ethylene oxide.
    Kirman CR; Sweeney LM; Teta MJ; Sielken RL; Valdez-Flores C; Albertini RJ; Gargas ML
    Risk Anal; 2004 Oct; 24(5):1165-83. PubMed ID: 15563286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cancer dose--response assessment for acrylonitrile based upon rodent brain tumor incidence: use of epidemiologic, mechanistic, and pharmacokinetic support for nonlinearity.
    Kirman CR; Gargas ML; Marsh GM; Strother DE; Klaunig JE; Collins JJ; Deskin R
    Regul Toxicol Pharmacol; 2005 Oct; 43(1):85-103. PubMed ID: 16099568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear-No-Threshold Default Assumptions for Noncancer and Nongenotoxic Cancer Risks: A Mathematical and Biological Critique.
    Bogen KT
    Risk Anal; 2016 Mar; 36(3):589-604. PubMed ID: 26249816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can the concept of hormesis Be generalized to carcinogenesis?
    Calabrese EJ; Baldwin LA
    Regul Toxicol Pharmacol; 1998 Dec; 28(3):230-41. PubMed ID: 10049795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of thresholds on the risk assessment of carcinogens in food.
    Pratt I; Barlow S; Kleiner J; Larsen JC
    Mutat Res; 2009 Aug; 678(2):113-7. PubMed ID: 19442758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scientific analysis of the proposed uses of the T25 dose descriptor in chemical carcinogen regulation.
    Roberts RA; Crump KS; Lutz WK; Wiegand HJ; Williams GM; Harrison PT; Purchase IF
    Arch Toxicol; 2001 Nov; 75(9):507-12. PubMed ID: 11760810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Single Exposure Carcinogen Database: assessing the circumstances under which a single exposure to a carcinogen can cause cancer.
    Calabrese EJ; Blain RB
    Toxicol Sci; 1999 Aug; 50(2):169-85. PubMed ID: 10478853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concordance of thresholds for carcinogenicity of N-nitrosodiethylamine.
    Waddell WJ; Fukushima S; Williams GM
    Arch Toxicol; 2006 Jun; 80(6):305-9. PubMed ID: 16308687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinearity and thresholds in dose-response relationships for carcinogenicity due to sampling variation, logarithmic dose scaling, or small differences in individual susceptibility.
    Lutz WK; Gaylor DW; Conolly RB; Lutz RW
    Toxicol Appl Pharmacol; 2005 Sep; 207(2 Suppl):565-9. PubMed ID: 15982698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review of the evidence for thresholds for DNA-Reactive and epigenetic experimental chemical carcinogens.
    Kobets T; Williams GM
    Chem Biol Interact; 2019 Mar; 301():88-111. PubMed ID: 30763546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Principles underlying dose selection for, and extrapolation from, the carcinogen bioassay: dose influences mechanism.
    Counts JL; Goodman JI
    Regul Toxicol Pharmacol; 1995 Jun; 21(3):418-21. PubMed ID: 7480895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The road to linearity: why linearity at low doses became the basis for carcinogen risk assessment.
    Calabrese EJ
    Arch Toxicol; 2009 Mar; 83(3):203-25. PubMed ID: 19247635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Threshold dose response for tumor induction by genotoxic carcinogens modeled via cell-cycle delay.
    Lutz WK; Kopp-Schneider A
    Toxicol Sci; 1999 May; 49(1):110-5. PubMed ID: 10367348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.