These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 33823297)
1. Spectral Prediction Features as a Solution for the Search Space Size Problem in Proteogenomics. Verbruggen S; Gessulat S; Gabriels R; Matsaroki A; Van de Voorde H; Kuster B; Degroeve S; Martens L; Van Criekinge W; Wilhelm M; Menschaert G Mol Cell Proteomics; 2021; 20():100076. PubMed ID: 33823297 [TBL] [Abstract][Full Text] [Related]
2. PROTEOFORMER 2.0: Further Developments in the Ribosome Profiling-assisted Proteogenomic Hunt for New Proteoforms. Verbruggen S; Ndah E; Van Criekinge W; Gessulat S; Kuster B; Wilhelm M; Van Damme P; Menschaert G Mol Cell Proteomics; 2019 Aug; 18(8 suppl 1):S126-S140. PubMed ID: 31040227 [TBL] [Abstract][Full Text] [Related]
3. Proteoform Identification by Combining RNA-Seq and Top-Down Mass Spectrometry. Chen W; Liu X J Proteome Res; 2021 Jan; 20(1):261-269. PubMed ID: 33183009 [TBL] [Abstract][Full Text] [Related]
4. Proteogenomics of Malignant Melanoma Cell Lines: The Effect of Stringency of Exome Data Filtering on Variant Peptide Identification in Shotgun Proteomics. Lobas AA; Pyatnitskiy MA; Chernobrovkin AL; Ilina IY; Karpov DS; Solovyeva EM; Kuznetsova KG; Ivanov MV; Lyssuk EY; Kliuchnikova AA; Voronko OE; Larin SS; Zubarev RA; Gorshkov MV; Moshkovskii SA J Proteome Res; 2018 May; 17(5):1801-1811. PubMed ID: 29619825 [TBL] [Abstract][Full Text] [Related]
5. Integrated Proteomic Pipeline Using Multiple Search Engines for a Proteogenomic Study with a Controlled Protein False Discovery Rate. Park GW; Hwang H; Kim KH; Lee JY; Lee HK; Park JY; Ji ES; Park SR; Yates JR; Kwon KH; Park YM; Lee HJ; Paik YK; Kim JY; Yoo JS J Proteome Res; 2016 Nov; 15(11):4082-4090. PubMed ID: 27537616 [TBL] [Abstract][Full Text] [Related]
8. Evaluating the effect of database inflation in proteogenomic search on sensitive and reliable peptide identification. Li H; Joh YS; Kim H; Paek E; Lee SW; Hwang KB BMC Genomics; 2016 Dec; 17(Suppl 13):1031. PubMed ID: 28155652 [TBL] [Abstract][Full Text] [Related]
9. Brute-Force Approach for Mass Spectrometry-Based Variant Peptide Identification in Proteogenomics without Personalized Genomic Data. Ivanov MV; Lobas AA; Levitsky LI; Moshkovskii SA; Gorshkov MV J Am Soc Mass Spectrom; 2018 Feb; 29(2):435-438. PubMed ID: 29299837 [TBL] [Abstract][Full Text] [Related]
10. Proteogenomics: From next-generation sequencing (NGS) and mass spectrometry-based proteomics to precision medicine. Ang MY; Low TY; Lee PY; Wan Mohamad Nazarie WF; Guryev V; Jamal R Clin Chim Acta; 2019 Nov; 498():38-46. PubMed ID: 31421119 [TBL] [Abstract][Full Text] [Related]
11. Proteogenomics-Guided Evaluation of RNA-Seq Assembly and Protein Database Construction for Emergent Model Organisms. Cogne Y; Gouveia D; Chaumot A; Degli-Esposti D; Geffard O; Pible O; Almunia C; Armengaud J Proteomics; 2020 May; 20(10):e1900261. PubMed ID: 32249536 [TBL] [Abstract][Full Text] [Related]
12. SMAP is a pipeline for sample matching in proteogenomics. Li L; Niu M; Erickson A; Luo J; Rowbotham K; Guo K; Huang H; Li Y; Jiang Y; Hur J; Liu C; Peng J; Wang X Nat Commun; 2022 Feb; 13(1):744. PubMed ID: 35136070 [TBL] [Abstract][Full Text] [Related]
13. A proteogenomics approach integrating proteomics and ribosome profiling increases the efficiency of protein identification and enables the discovery of alternative translation start sites. Koch A; Gawron D; Steyaert S; Ndah E; Crappé J; De Keulenaer S; De Meester E; Ma M; Shen B; Gevaert K; Van Criekinge W; Van Damme P; Menschaert G Proteomics; 2014 Dec; 14(23-24):2688-98. PubMed ID: 25156699 [TBL] [Abstract][Full Text] [Related]
14. Mutant Proteogenomics. Végvári Á Adv Exp Med Biol; 2016; 926():77-91. PubMed ID: 27686807 [TBL] [Abstract][Full Text] [Related]
15. An integrative proteogenomics approach reveals peptides encoded by annotated lincRNA in the mouse kidney inner medulla. Flower CT; Chen L; Jung HJ; Raghuram V; Knepper MA; Yang CR Physiol Genomics; 2020 Oct; 52(10):485-491. PubMed ID: 32866085 [TBL] [Abstract][Full Text] [Related]
16. Comparison of False Discovery Rate Control Strategies for Variant Peptide Identifications in Shotgun Proteogenomics. Ivanov MV; Lobas AA; Karpov DS; Moshkovskii SA; Gorshkov MV J Proteome Res; 2017 May; 16(5):1936-1943. PubMed ID: 28317375 [TBL] [Abstract][Full Text] [Related]
17. Identification of Small Novel Coding Sequences, a Proteogenomics Endeavor. Olexiouk V; Menschaert G Adv Exp Med Biol; 2016; 926():49-64. PubMed ID: 27686805 [TBL] [Abstract][Full Text] [Related]
18. ProteomeGenerator: A Framework for Comprehensive Proteomics Based on de Novo Transcriptome Assembly and High-Accuracy Peptide Mass Spectral Matching. Cifani P; Dhabaria A; Chen Z; Yoshimi A; Kawaler E; Abdel-Wahab O; Poirier JT; Kentsis A J Proteome Res; 2018 Nov; 17(11):3681-3692. PubMed ID: 30295032 [TBL] [Abstract][Full Text] [Related]
19. Deep proteome coverage based on ribosome profiling aids mass spectrometry-based protein and peptide discovery and provides evidence of alternative translation products and near-cognate translation initiation events. Menschaert G; Van Criekinge W; Notelaers T; Koch A; Crappé J; Gevaert K; Van Damme P Mol Cell Proteomics; 2013 Jul; 12(7):1780-90. PubMed ID: 23429522 [TBL] [Abstract][Full Text] [Related]
20. Proteogenomics: Recycling Public Data to Improve Genome Annotations. McAfee A; Foster LJ Methods Enzymol; 2017; 585():217-243. PubMed ID: 28109431 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]