These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 33823325)

  • 1. Recent advances and directions in the development of bioresorbable metallic cardiovascular stents: Insights from recent human and in vivo studies.
    Oliver AA; Sikora-Jasinska M; Demir AG; Guillory RJ
    Acta Biomater; 2021 Jun; 127():1-23. PubMed ID: 33823325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in the development of biodegradable coronary stents: A translational perspective.
    Zong J; He Q; Liu Y; Qiu M; Wu J; Hu B
    Mater Today Bio; 2022 Dec; 16():100368. PubMed ID: 35937578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of metallic cardiovascular stent materials: A comparative study among stainless steel, magnesium and zinc.
    Fu J; Su Y; Qin YX; Zheng Y; Wang Y; Zhu D
    Biomaterials; 2020 Feb; 230():119641. PubMed ID: 31806406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic Layer Deposition Coating of TiO
    Yang F; Chang R; Webster TJ
    Int J Nanomedicine; 2019; 14():9955-9970. PubMed ID: 31908452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradable Metals for Cardiovascular Stents: from Clinical Concerns to Recent Zn-Alloys.
    Bowen PK; Shearier ER; Zhao S; Guillory RJ; Zhao F; Goldman J; Drelich JW
    Adv Healthc Mater; 2016 May; 5(10):1121-40. PubMed ID: 27094868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioresorbable Metals for Biomedical Applications: From Mechanical Components to Electronic Devices.
    Ryu H; Seo MH; Rogers JA
    Adv Healthc Mater; 2021 Sep; 10(17):e2002236. PubMed ID: 33586341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zinc-based alloys for degradable vascular stent applications.
    Mostaed E; Sikora-Jasinska M; Drelich JW; Vedani M
    Acta Biomater; 2018 Apr; 71():1-23. PubMed ID: 29530821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zn-alloy provides a novel platform for mechanically stable bioresorbable vascular stents.
    Hehrlein C; Schorch B; Kress N; Arab A; von Zur Mühlen C; Bode C; Epting T; Haberstroh J; Mey L; Schwarzbach H; Kinscherf R; Stachniss V; Schiestel S; Kovacs A; Fischer H; Nennig E
    PLoS One; 2019; 14(1):e0209111. PubMed ID: 30601854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current status and perspectives of zinc-based absorbable alloys for biomedical applications.
    Hernández-Escobar D; Champagne S; Yilmazer H; Dikici B; Boehlert CJ; Hermawan H
    Acta Biomater; 2019 Oct; 97():1-22. PubMed ID: 31351253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A feasibility study of biodegradable magnesium-aluminum-zinc-calcium-manganese (AZXM) alloys for tracheal stent application.
    Wu J; Lee B; Saha P; N Kumta P
    J Biomater Appl; 2019 Mar; 33(8):1080-1093. PubMed ID: 30717611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation.
    Mostaed E; Sikora-Jasinska M; Mostaed A; Loffredo S; Demir AG; Previtali B; Mantovani D; Beanland R; Vedani M
    J Mech Behav Biomed Mater; 2016 Jul; 60():581-602. PubMed ID: 27062241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: a meta-analysis of randomised controlled trials.
    Cassese S; Byrne RA; Ndrepepa G; Kufner S; Wiebe J; Repp J; Schunkert H; Fusaro M; Kimura T; Kastrati A
    Lancet; 2016 Feb; 387(10018):537-544. PubMed ID: 26597771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioresorbable metal scaffold for cardiovascular application: current knowledge and future perspectives.
    Kitabata H; Waksman R; Warnack B
    Cardiovasc Revasc Med; 2014 Mar; 15(2):109-16. PubMed ID: 24684760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plastic strains during stent deployment have a critical influence on the rate of corrosion in absorbable magnesium stents.
    Galvin E; Cummins C; Yoshihara S; Mac Donald BJ; Lally C
    Med Biol Eng Comput; 2017 Aug; 55(8):1261-1275. PubMed ID: 27785607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Mechanical analysis on a new type of biodegradable magnesium-alloy stent].
    Wang X; Cui F; Li J; Zhao X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Apr; 26(2):338-41. PubMed ID: 19499798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zn-Mg-WC Nanocomposites for Bioresorbable Cardiovascular Stents: Microstructure, Mechanical Properties, Fatigue, Shelf Life, and Corrosion.
    Guan Z; Linsley CS; Pan S; Yao G; Wu BM; Levi DS; Li X
    ACS Biomater Sci Eng; 2022 Jan; 8(1):328-339. PubMed ID: 34964351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of strain on degradation behaviors of WE43, Fe and Zn wires.
    Chen K; Lu Y; Tang H; Gao Y; Zhao F; Gu X; Fan Y
    Acta Biomater; 2020 Sep; 113():627-645. PubMed ID: 32574860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of the SYNERGY bioresorbable polymer metallic coronary stent.
    Shreenivas SS; Kereiakes DJ
    Future Cardiol; 2018 Jul; 14(4):307-317. PubMed ID: 29926758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on the Mg-Li-Zn ternary alloy system with improved mechanical properties, good degradation performance and different responses to cells.
    Liu Y; Wu Y; Bian D; Gao S; Leeflang S; Guo H; Zheng Y; Zhou J
    Acta Biomater; 2017 Oct; 62():418-433. PubMed ID: 28823717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation on large elastoplastic deformation in expansion and springback for a composited bioresorbable stent.
    Chen Y; Shang X
    J Mech Behav Biomed Mater; 2021 Jul; 119():104500. PubMed ID: 33894526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.