BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 33823414)

  • 1. Integrated catalytic insights into methanol production: Sustainable framework for CO
    Bhardwaj R; Sharma T; Nguyen DD; Cheng CK; Lam SS; Xia C; Nadda AK
    J Environ Manage; 2021 Jul; 289():112468. PubMed ID: 33823414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Turning carbon dioxide into fuel.
    Jiang Z; Xiao T; Kuznetsov VL; Edwards PP
    Philos Trans A Math Phys Eng Sci; 2010 Jul; 368(1923):3343-64. PubMed ID: 20566515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of carbon dioxide to methanol: A comprehensive review.
    Biswal T; Shadangi KP; Sarangi PK; Srivastava RK
    Chemosphere; 2022 Jul; 298():134299. PubMed ID: 35304218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis.
    Shi L; Yang G; Tao K; Yoneyama Y; Tan Y; Tsubaki N
    Acc Chem Res; 2013 Aug; 46(8):1838-47. PubMed ID: 23459583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recycling of carbon dioxide to methanol and derived products - closing the loop.
    Goeppert A; Czaun M; Jones JP; Surya Prakash GK; Olah GA
    Chem Soc Rev; 2014 Dec; 43(23):7995-8048. PubMed ID: 24935751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic conversion of carbon dioxide.
    Shi J; Jiang Y; Jiang Z; Wang X; Wang X; Zhang S; Han P; Yang C
    Chem Soc Rev; 2015 Oct; 44(17):5981-6000. PubMed ID: 26055659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Process Advantages of Direct CO
    Marlin DS; Sarron E; Sigurbjörnsson Ó
    Front Chem; 2018; 6():446. PubMed ID: 30320077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CO
    Feng L; Gu Y; Dong M; Liu J; Jiang L; Wu Y
    Environ Sci Pollut Res Int; 2024 Apr; 31(16):23393-23407. PubMed ID: 38451455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CO
    Antonopoulou I; Rova U; Christakopoulos P
    Methods Mol Biol; 2022; 2487():317-344. PubMed ID: 35687244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymes,
    Intasian P; Prakinee K; Phintha A; Trisrivirat D; Weeranoppanant N; Wongnate T; Chaiyen P
    Chem Rev; 2021 Sep; 121(17):10367-10451. PubMed ID: 34228428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into Enzyme Reactions with Redox Cofactors in Biological Conversion of CO
    Kang DK; Kim SH; Sohn JH; Sung BH
    J Microbiol Biotechnol; 2023 Nov; 33(11):1403-1411. PubMed ID: 37482811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced zeolite and ordered mesoporous silica-based catalysts for the conversion of CO
    Velty A; Corma A
    Chem Soc Rev; 2023 Mar; 52(5):1773-1946. PubMed ID: 36786224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The production of fuels and chemicals in the new world: critical analysis of the choice between crude oil and biomass vis-à-vis sustainability and the environment.
    Yadav VG; Yadav GD; Patankar SC
    Clean Technol Environ Policy; 2020; 22(9):1757-1774. PubMed ID: 32982628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High efficient conversion of CO2-rich bio-syngas to CO-rich bio-syngas using biomass char: a useful approach for production of bio-methanol from bio-oil.
    Xu Y; Ye TQ; Qiu SB; Ning S; Gong FY; Liu Y; Li QX
    Bioresour Technol; 2011 May; 102(10):6239-45. PubMed ID: 21392976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermochemical and electrochemical aspects of carbon dioxide methanation: A sustainable approach to generate fuel via waste to energy theme.
    Ali N; Bilal M; Nazir MS; Khan A; Ali F; Iqbal HMN
    Sci Total Environ; 2020 Apr; 712():136482. PubMed ID: 31931218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tertiary Amine-Ethylene Glycol Based Tandem CO
    Sen R; Koch CJ; Goeppert A; Prakash GKS
    ChemSusChem; 2020 Dec; 13(23):6318-6322. PubMed ID: 33075206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalysis for biomass and CO2 use through solar energy: opening new scenarios for a sustainable and low-carbon chemical production.
    Lanzafame P; Centi G; Perathoner S
    Chem Soc Rev; 2014 Nov; 43(22):7562-80. PubMed ID: 24577063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CO
    Xie S; Zhang W; Lan X; Lin H
    ChemSusChem; 2020 Dec; 13(23):6141-6159. PubMed ID: 33137230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic conversion of nonfood woody biomass solids to organic liquids.
    Barta K; Ford PC
    Acc Chem Res; 2014 May; 47(5):1503-12. PubMed ID: 24745655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Techno-Economic Assessment of Bio-Syngas Production for Methanol Synthesis: A Focus on the Water-Gas Shift and Carbon Capture Sections.
    Giuliano A; Freda C; Catizzone E
    Bioengineering (Basel); 2020 Jul; 7(3):. PubMed ID: 32635528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.