These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33823438)

  • 1. Dealing with complex contamination: A novel approach with a combined bio-phytoremediation strategy and effective analytical techniques.
    Conte A; Chiaberge S; Pedron F; Barbafieri M; Petruzzelli G; Vocciante M; Franchi E; Pietrini I
    J Environ Manage; 2021 Jun; 288():112381. PubMed ID: 33823438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved arsenic phytoextraction by combined use of mobilizing chemicals and autochthonous soil bacteria.
    Franchi E; Cosmina P; Pedron F; Rosellini I; Barbafieri M; Petruzzelli G; Vocciante M
    Sci Total Environ; 2019 Mar; 655():328-336. PubMed ID: 30471601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of Cu-resistant plant growth-promoting rhizobacteria and EDTA on phytoremediation efficiency of plants in a Cu-contaminated soil.
    Abbaszadeh-Dahaji P; Baniasad-Asgari A; Hamidpour M
    Environ Sci Pollut Res Int; 2019 Nov; 26(31):31822-31833. PubMed ID: 31487012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosurfactant-assisted phytoremediation of multi-contaminated industrial soil using sunflower (Helianthus annuus L.).
    Liduino VS; Servulo EFC; Oliveira FJS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Jun; 53(7):609-616. PubMed ID: 29388890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation efficiency of Helianthus annuus L. for reclamation of heavy metals-contaminated industrial soil.
    Chauhan P; Mathur J
    Environ Sci Pollut Res Int; 2020 Aug; 27(24):29954-29966. PubMed ID: 32445141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation.
    Agnello AC; Bagard M; van Hullebusch ED; Esposito G; Huguenot D
    Sci Total Environ; 2016 Sep; 563-564():693-703. PubMed ID: 26524994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil.
    Lesage E; Meers E; Vervaeke P; Lamsal S; Hopgood M; Tack FM; Verloo MG
    Int J Phytoremediation; 2005; 7(2):143-52. PubMed ID: 16128445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Promises and potential of
    Khan AG
    Int J Phytoremediation; 2020; 22(9):900-915. PubMed ID: 32538143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioaugmentation with copper tolerant endophyte Pseudomonas lurida strain EOO26 for improved plant growth and copper phytoremediation by Helianthus annuus.
    Kumar A; Tripti ; Voropaeva O; Maleva M; Panikovskaya K; Borisova G; Rajkumar M; Bruno LB
    Chemosphere; 2021 Mar; 266():128983. PubMed ID: 33272662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils.
    Meers E; Ruttens A; Hopgood M; Lesage E; Tack FM
    Chemosphere; 2005 Oct; 61(4):561-72. PubMed ID: 16202810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of factors affecting phytoremediation of multi-elements polluted calcareous soil using Taguchi optimization.
    Razmi B; Ghasemi-Fasaei R; Ronaghi A; Mostowfizadeh-Ghalamfarsa R
    Ecotoxicol Environ Saf; 2021 Jan; 207():111315. PubMed ID: 32947213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nature-Based Solutions for Restoring an Agricultural Area Contaminated by an Oil Spill.
    Franchi E; Cardaci A; Pietrini I; Fusini D; Conte A; De Folly D'Auris A; Grifoni M; Pedron F; Barbafieri M; Petruzzelli G; Vocciante M
    Plants (Basel); 2022 Aug; 11(17):. PubMed ID: 36079632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoremediation-biorefinery tandem for effective clean-up of metal contaminated soil and biomass valorisation.
    Sotenko M; Coles S; Barker G; Song L; Jiang Y; Longhurst P; Romanova T; Shuvaeva O; Kirwan K
    Int J Phytoremediation; 2017 Nov; 19(11):965-975. PubMed ID: 27936864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbially supported phytoremediation of heavy metal contaminated soils: strategies and applications.
    Phieler R; Voit A; Kothe E
    Adv Biochem Eng Biotechnol; 2014; 141():211-35. PubMed ID: 23719709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A holistic approach to soil contamination and sustainable phytoremediation with energy crops in the Aegean Region of Turkey.
    Baştabak B; Gödekmerdan E; Koçar G
    Chemosphere; 2021 Aug; 276():130192. PubMed ID: 33740653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of plant growth promoting rhizobacterial strains Paenibacillus sp. IITISM08, Bacillus sp. PRB77 and Bacillus sp. PRB101 using Helianthus annuus on degradation of endosulfan from contaminated soil.
    Rani R; Kumar V; Usmani Z; Gupta P; Chandra A
    Chemosphere; 2019 Jun; 225():479-489. PubMed ID: 30897471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myco-phytoremediation of arsenic- and lead-contaminated soils by Helianthus annuus and wood rot fungi, Trichoderma sp. isolated from decayed wood.
    Govarthanan M; Mythili R; Selvankumar T; Kamala-Kannan S; Kim H
    Ecotoxicol Environ Saf; 2018 Apr; 151():279-284. PubMed ID: 29407561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assisted phytoremediation of a multi-contaminated soil: Investigation on arsenic and lead combined mobilization and removal.
    Barbafieri M; Pedron F; Petruzzelli G; Rosellini I; Franchi E; Bagatin R; Vocciante M
    J Environ Manage; 2017 Dec; 203(Pt 1):316-329. PubMed ID: 28803155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating Biochar, Bacteria, and Plants for Sustainable Remediation of Soils Contaminated with Organic Pollutants.
    Xiang L; Harindintwali JD; Wang F; Redmile-Gordon M; Chang SX; Fu Y; He C; Muhoza B; Brahushi F; Bolan N; Jiang X; Ok YS; Rinklebe J; Schaeffer A; Zhu YG; Tiedje JM; Xing B
    Environ Sci Technol; 2022 Dec; 56(23):16546-16566. PubMed ID: 36301703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of sunflower germplasm for phytoremediation of lead-polluted soil and production of seed oil and seed meal for human and animal consumption.
    Zehra A; Sahito ZA; Tong W; Tang L; Hamid Y; Khan MB; Ali Z; Naqvi B; Yang X
    J Environ Sci (China); 2020 Jan; 87():24-38. PubMed ID: 31791497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.