These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 33823457)

  • 21. The Formation of a Camalexin Biosynthetic Metabolon.
    Mucha S; Heinzlmeir S; Kriechbaumer V; Strickland B; Kirchhelle C; Choudhary M; Kowalski N; Eichmann R; Hückelhoven R; Grill E; Kuster B; Glawischnig E
    Plant Cell; 2019 Nov; 31(11):2697-2710. PubMed ID: 31511315
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insect eggs trigger systemic acquired resistance against a fungal and an oomycete pathogen.
    Alfonso E; Stahl E; Glauser G; Bellani E; Raaymakers TM; Van den Ackerveken G; Zeier J; Reymond P
    New Phytol; 2021 Dec; 232(6):2491-2505. PubMed ID: 34510462
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arabidopsis cysteine-rich receptor-like kinase 45 positively regulates disease resistance to Pseudomonas syringae.
    Zhang X; Han X; Shi R; Yang G; Qi L; Wang R; Li G
    Plant Physiol Biochem; 2013 Dec; 73():383-91. PubMed ID: 24215930
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A fast and precise method to identify indolic glucosinolates and camalexin in plants by combining mass spectrometric and biological information.
    Zandalinas SI; Vives-Peris V; Gómez-Cadenas A; Arbona V
    J Agric Food Chem; 2012 Sep; 60(35):8648-58. PubMed ID: 22870889
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new cyanogenic metabolite in Arabidopsis required for inducible pathogen defence.
    Rajniak J; Barco B; Clay NK; Sattely ES
    Nature; 2015 Sep; 525(7569):376-9. PubMed ID: 26352477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CYP71B15 (PAD3) catalyzes the final step in camalexin biosynthesis.
    Schuhegger R; Nafisi M; Mansourova M; Petersen BL; Olsen CE; Svatos A; Halkier BA; Glawischnig E
    Plant Physiol; 2006 Aug; 141(4):1248-54. PubMed ID: 16766671
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bacterial non-host resistance: interactions of Arabidopsis with non-adapted Pseudomonas syringae strains.
    Mishina TE; Zeier J
    Physiol Plant; 2007 Nov; 131(3):448-61. PubMed ID: 18251883
    [TBL] [Abstract][Full Text] [Related]  

  • 28. IDL6-HAE/HSL2 impacts pectin degradation and resistance to Pseudomonas syringae pv tomato DC3000 in Arabidopsis leaves.
    Wang X; Hou S; Wu Q; Lin M; Acharya BR; Wu D; Zhang W
    Plant J; 2017 Jan; 89(2):250-263. PubMed ID: 27618493
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolomic analysis reveals the relationship between AZI1 and sugar signaling in systemic acquired resistance of Arabidopsis.
    Wang XY; Li DZ; Li Q; Ma YQ; Yao JW; Huang X; Xu ZQ
    Plant Physiol Biochem; 2016 Oct; 107():273-287. PubMed ID: 27337039
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae.
    Laurie-Berry N; Joardar V; Street IH; Kunkel BN
    Mol Plant Microbe Interact; 2006 Jul; 19(7):789-800. PubMed ID: 16838791
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coi1) mutation occurs through two distinct mechanisms.
    Kloek AP; Verbsky ML; Sharma SB; Schoelz JE; Vogel J; Klessig DF; Kunkel BN
    Plant J; 2001 Jun; 26(5):509-22. PubMed ID: 11439137
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biochemical Principles and Functional Aspects of Pipecolic Acid Biosynthesis in Plant Immunity.
    Hartmann M; Kim D; Bernsdorff F; Ajami-Rashidi Z; Scholten N; Schreiber S; Zeier T; Schuck S; Reichel-Deland V; Zeier J
    Plant Physiol; 2017 May; 174(1):124-153. PubMed ID: 28330936
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The metabolic transition during disease following infection of Arabidopsis thaliana by Pseudomonas syringae pv. tomato.
    Ward JL; Forcat S; Beckmann M; Bennett M; Miller SJ; Baker JM; Hawkins ND; Vermeer CP; Lu C; Lin W; Truman WM; Beale MH; Draper J; Mansfield JW; Grant M
    Plant J; 2010 Aug; 63(3):443-57. PubMed ID: 20497374
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inositol hexakisphosphate biosynthesis underpins PAMP-triggered immunity to Pseudomonas syringae pv. tomato in Arabidopsis thaliana but is dispensable for establishment of systemic acquired resistance.
    Poon JSY; Le Fevre RE; Carr JP; Hanke DE; Murphy AM
    Mol Plant Pathol; 2020 Mar; 21(3):376-387. PubMed ID: 31876373
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae.
    Hu Y; Dong Q; Yu D
    Plant Sci; 2012 Apr; 185-186():288-97. PubMed ID: 22325892
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Constitutive camalexin production and environmental stress response variation in Arabidopsis populations from the Iberian Peninsula.
    Zhang N; Lariviere A; Tonsor SJ; Traw MB
    Plant Sci; 2014 Aug; 225():77-85. PubMed ID: 25017162
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis.
    Mishina TE; Zeier J
    Plant J; 2007 May; 50(3):500-13. PubMed ID: 17419843
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glycan-binding F-box protein from Arabidopsis thaliana protects plants from Pseudomonas syringae infection.
    Stefanowicz K; Lannoo N; Zhao Y; Eggermont L; Van Hove J; Al Atalah B; Van Damme EJ
    BMC Plant Biol; 2016 Oct; 16(1):213. PubMed ID: 27716048
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana.
    Brotman Y; Lisec J; Méret M; Chet I; Willmitzer L; Viterbo A
    Microbiology (Reading); 2012 Jan; 158(Pt 1):139-146. PubMed ID: 21852347
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The BOS loci of Arabidopsis are required for resistance to Botrytis cinerea infection.
    Veronese P; Chen X; Bluhm B; Salmeron J; Dietrich R; Mengiste T
    Plant J; 2004 Nov; 40(4):558-74. PubMed ID: 15500471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.