These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 33823497)

  • 1. ELVISort: encoding latent variables for instant sorting, an artificial intelligence-based end-to-end solution.
    Rokai J; Rácz M; Fiáth R; Ulbert I; Márton G
    J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33823497
    [No Abstract]   [Full Text] [Related]  

  • 2. Edge computing on TPU for brain implant signal analysis.
    Rokai J; Ulbert I; Márton G
    Neural Netw; 2023 May; 162():212-224. PubMed ID: 36921432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Online spike sorting via deep contractive autoencoder.
    Radmanesh M; Rezaei AA; Jalili M; Hashemi A; Goudarzi MM
    Neural Netw; 2022 Nov; 155():39-49. PubMed ID: 36041279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SpikeDeep-classifier: a deep-learning based fully automatic offline spike sorting algorithm.
    Saif-Ur-Rehman M; Ali O; Dyck S; Lienkämper R; Metzler M; Parpaley Y; Wellmer J; Liu C; Lee B; Kellis S; Andersen R; Iossifidis I; Glasmachers T; Klaes C
    J Neural Eng; 2021 Feb; 18(1):. PubMed ID: 33166944
    [No Abstract]   [Full Text] [Related]  

  • 5. Deep compressive autoencoder for action potential compression in large-scale neural recording.
    Wu T; Zhao W; Keefer E; Yang Z
    J Neural Eng; 2018 Dec; 15(6):066019. PubMed ID: 30215605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spike sorting algorithms and their efficient hardware implementation: a comprehensive survey.
    Zhang T; Rahimi Azghadi M; Lammie C; Amirsoleimani A; Genov R
    J Neural Eng; 2023 Apr; 20(2):. PubMed ID: 36972585
    [No Abstract]   [Full Text] [Related]  

  • 7. Computationally efficient fully-automatic online neural spike detection and sorting in presence of multi-unit activity for implantable circuits.
    Tariq T; Satti MH; Kamboh HM; Saeed M; Kamboh AM
    Comput Methods Programs Biomed; 2019 Oct; 179():104986. PubMed ID: 31443868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning to Sort: Few-shot Spike Sorting with Adversarial Representation Learning.
    Wu T; Ratkai A; Schlett K; Grand L; Yang Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():713-716. PubMed ID: 31945996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Unsupervised Online Spike-Sorting Framework.
    Knieling S; Sridharan KS; Belardinelli P; Naros G; Weiss D; Mormann F; Gharabaghi A
    Int J Neural Syst; 2016 Aug; 26(5):1550042. PubMed ID: 26711713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Efficient Hardware Architecture for Template Matching-Based Spike Sorting.
    Valencia D; Alimohammad A
    IEEE Trans Biomed Circuits Syst; 2019 Jun; 13(3):481-492. PubMed ID: 30932848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Independent Component Analysis for Fully Automated Multi-Electrode Array Spike Sorting.
    Buccino AP; Hagen E; Einevoll GT; Hafliger PD; Cauwenbergh G
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2627-2630. PubMed ID: 30440947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-latency single channel real-time neural spike sorting system based on template matching.
    Wang PK; Pun SH; Chen CH; McCullagh EA; Klug A; Li A; Vai MI; Mak PU; Lei TC
    PLoS One; 2019; 14(11):e0225138. PubMed ID: 31756211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep-learned spike representations and sorting via an ensemble of auto-encoders.
    Eom J; Park IY; Kim S; Jang H; Park S; Huh Y; Hwang D
    Neural Netw; 2021 Feb; 134():131-142. PubMed ID: 33307279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SpikeInterface, a unified framework for spike sorting.
    Buccino AP; Hurwitz CL; Garcia S; Magland J; Siegle JH; Hurwitz R; Hennig MH
    Elife; 2020 Nov; 9():. PubMed ID: 33170122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Event-driven processing for hardware-efficient neural spike sorting.
    Liu Y; Pereira JL; Constandinou TG
    J Neural Eng; 2018 Feb; 15(1):016016. PubMed ID: 28978779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Do not waste your electrodes-principles of optimal electrode geometry for spike sorting.
    Tóth R; Miklós Barth A; Domonkos A; Varga V; Somogyvári Z
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34181590
    [No Abstract]   [Full Text] [Related]  

  • 17. NASS: an empirical approach to spike sorting with overlap resolution based on a hybrid noise-assisted methodology.
    Adamos DA; Laskaris NA; Kosmidis EK; Theophilidis G
    J Neurosci Methods; 2010 Jun; 190(1):129-42. PubMed ID: 20434486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical Adaptive Means (HAM) clustering for hardware-efficient, unsupervised and real-time spike sorting.
    Paraskevopoulou SE; Wu D; Eftekhar A; Constandinou TG
    J Neurosci Methods; 2014 Sep; 235():145-56. PubMed ID: 25035965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural Parallel Engine: A toolbox for massively parallel neural signal processing.
    Tam WK; Yang Z
    J Neurosci Methods; 2018 May; 301():18-33. PubMed ID: 29530617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Multi-Channel Spike Sorting Processor With Accurate Clustering Algorithm Using Convolutional Autoencoder.
    Seong C; Lee W; Jeon D
    IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1441-1453. PubMed ID: 34898437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.