These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Self-assembly in nature: using the principles of nature to create complex nanobiomaterials. Mendes AC; Baran ET; Reis RL; Azevedo HS Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(6):582-612. PubMed ID: 23929805 [TBL] [Abstract][Full Text] [Related]
23. Mimicking Complex Biological Membranes and Their Programmable Glycan Ligands with Dendrimersomes and Glycodendrimersomes. Sherman SE; Xiao Q; Percec V Chem Rev; 2017 May; 117(9):6538-6631. PubMed ID: 28417638 [TBL] [Abstract][Full Text] [Related]
24. Self-assembling tryptophan-based designer peptides as intracellular delivery vehicles. Bhardwaj I; Jha D; Admane P; Panda AK; Haridas V Bioorg Med Chem Lett; 2016 Jan; 26(2):672-676. PubMed ID: 26631316 [TBL] [Abstract][Full Text] [Related]
25. Size and structure of spontaneously forming liposomes in lipid/PEG-lipid mixtures. Rovira-Bru M; Thompson DH; Szleifer I Biophys J; 2002 Nov; 83(5):2419-39. PubMed ID: 12414678 [TBL] [Abstract][Full Text] [Related]
26. Aqueous phase separation as a possible route to compartmentalization of biological molecules. Keating CD Acc Chem Res; 2012 Dec; 45(12):2114-24. PubMed ID: 22330132 [TBL] [Abstract][Full Text] [Related]
27. Tunable self-assembled peptide amphiphile nanostructures. Meng Q; Kou Y; Ma X; Liang Y; Guo L; Ni C; Liu K Langmuir; 2012 Mar; 28(11):5017-22. PubMed ID: 22352406 [TBL] [Abstract][Full Text] [Related]
28. Membranized Coacervate Microdroplets: from Versatile Protocell Models to Cytomimetic Materials. Gao N; Mann S Acc Chem Res; 2023 Feb; 56(3):297-307. PubMed ID: 36625520 [TBL] [Abstract][Full Text] [Related]
29. Ionic Combisomes: A New Class of Biomimetic Vesicles to Fuse with Life. Wagner AM; Quandt J; Söder D; Garay-Sarmiento M; Joseph A; Petrovskii VS; Witzdam L; Hammoor T; Steitz P; Haraszti T; Potemkin II; Kostina NY; Herrmann A; Rodriguez-Emmenegger C Adv Sci (Weinh); 2022 Jun; 9(17):e2200617. PubMed ID: 35393756 [TBL] [Abstract][Full Text] [Related]
30. The chemical logic of a minimum protocell. Morowitz HJ; Heinz B; Deamer DW Orig Life Evol Biosph; 1988; 18(3):281-7. PubMed ID: 3226720 [TBL] [Abstract][Full Text] [Related]
31. Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics. Gong B; Shao Z Acc Chem Res; 2013 Dec; 46(12):2856-66. PubMed ID: 23597055 [TBL] [Abstract][Full Text] [Related]
32. Probing the self-assembly mechanism of diphenylalanine-based peptide nanovesicles and nanotubes. Guo C; Luo Y; Zhou R; Wei G ACS Nano; 2012 May; 6(5):3907-18. PubMed ID: 22468743 [TBL] [Abstract][Full Text] [Related]
33. Spontaneous Formation of a Vesicular Assembly by a Trimesic Acid Based Triple Tailed Amphiphile. Dinda S; Ghosh M; Das PK Langmuir; 2016 Jul; 32(26):6701-12. PubMed ID: 27300311 [TBL] [Abstract][Full Text] [Related]
34. Effects of Hydrophobic Residues on the Intracellular Self-Assembly of De Novo Designed Peptide Tags and Their Orthogonality. Miki T; Kajiwara K; Nakayama S; Hashimoto M; Mihara H ACS Synth Biol; 2022 Jun; 11(6):2144-2153. PubMed ID: 35302350 [TBL] [Abstract][Full Text] [Related]
36. Modification of Extracellular Vesicles by Fusion with Liposomes for the Design of Personalized Biogenic Drug Delivery Systems. Piffoux M; Silva AKA; Wilhelm C; Gazeau F; Tareste D ACS Nano; 2018 Jul; 12(7):6830-6842. PubMed ID: 29975503 [TBL] [Abstract][Full Text] [Related]