These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 33823858)
61. 3D fusion of intravascular ultrasound and coronary computed tomography for in-vivo wall shear stress analysis: a feasibility study. van der Giessen AG; Schaap M; Gijsen FJ; Groen HC; van Walsum T; Mollet NR; Dijkstra J; van de Vosse FN; Niessen WJ; de Feyter PJ; van der Steen AF; Wentzel JJ Int J Cardiovasc Imaging; 2010 Oct; 26(7):781-96. PubMed ID: 19946749 [TBL] [Abstract][Full Text] [Related]
62. [Ex vivo assessment of coronary lesions by optical coherence tomography and intravascular ultrasound in comparison with histology results]. Guo J; Sun L; Chen YD; Tian F; Liu HB; Chen L; Sun ZJ; Ren YH; Jin QH; Liu CF; Han BS; Gai LY; Yang TS Zhonghua Xin Xue Guan Bing Za Zhi; 2012 Apr; 40(4):302-6. PubMed ID: 22801308 [TBL] [Abstract][Full Text] [Related]
63. Combined optical coherence tomography and intravascular ultrasound radio frequency data analysis for plaque characterization. Classification accuracy of human coronary plaques in vitro. Goderie TP; van Soest G; Garcia-Garcia HM; Gonzalo N; Koljenović S; van Leenders GJ; Mastik F; Regar E; Oosterhuis JW; Serruys PW; van der Steen AF Int J Cardiovasc Imaging; 2010 Dec; 26(8):843-50. PubMed ID: 20396951 [TBL] [Abstract][Full Text] [Related]
64. Accurate and reproducible reconstruction of coronary arteries and endothelial shear stress calculation using 3D OCT: comparative study to 3D IVUS and 3D QCA. Toutouzas K; Chatzizisis YS; Riga M; Giannopoulos A; Antoniadis AP; Tu S; Fujino Y; Mitsouras D; Doulaverakis C; Tsampoulatidis I; Koutkias VG; Bouki K; Li Y; Chouvarda I; Cheimariotis G; Maglaveras N; Kompatsiaris I; Nakamura S; Reiber JH; Rybicki F; Karvounis H; Stefanadis C; Tousoulis D; Giannoglou GD Atherosclerosis; 2015 Jun; 240(2):510-9. PubMed ID: 25932791 [TBL] [Abstract][Full Text] [Related]
65. Wall shear stress-related plaque growth of lipid-rich plaques in human coronary arteries: an near-infrared spectroscopy and optical coherence tomography study. Hartman EMJ; De Nisco G; Kok AM; Tomaniak M; Nous FMA; Korteland SA; Gijsen FJH; den Dekker WK; Diletti R; van Mieghem NMDA; Wilschut JM; Zijlstra F; van der Steen AFW; Budde RPJ; Daemen J; Wentzel JJ Cardiovasc Res; 2023 May; 119(4):1021-1029. PubMed ID: 36575921 [TBL] [Abstract][Full Text] [Related]
66. Quantify patient-specific coronary material property and its impact on stress/strain calculations using in vivo IVUS data and 3D FSI models: a pilot study. Guo X; Zhu J; Maehara A; Monoly D; Samady H; Wang L; Billiar KL; Zheng J; Yang C; Mintz GS; Giddens DP; Tang D Biomech Model Mechanobiol; 2017 Feb; 16(1):333-344. PubMed ID: 27561649 [TBL] [Abstract][Full Text] [Related]
67. Impact of cholesterol metabolism on coronary plaque vulnerability of target vessels: a combined analysis of virtual histology intravascular ultrasound and optical coherence tomography. Nasu K; Terashima M; Habara M; Ko E; Ito T; Yokota D; Ishizuka S; Kurita T; Kimura M; Kinoshita Y; Asakura Y; Tsuchikane E; Katoh O; Suzuki T JACC Cardiovasc Interv; 2013 Jul; 6(7):746-55. PubMed ID: 23769651 [TBL] [Abstract][Full Text] [Related]
69. Near-infrared spectroscopy to predict plaque progression in plaque-free artery regions. Tomaniak M; Hartman EMJ; Tovar Forero MN; Wilschut J; Zijlstra F; Van Mieghem NM; Kardys I; Wentzel JJ; Daemen J EuroIntervention; 2022 Jun; 18(3):253-261. PubMed ID: 34930718 [TBL] [Abstract][Full Text] [Related]
70. Diagnostic Performance of High-Resolution Intravascular Ultrasound for the Detection of Plaque Rupture in Patients With Acute Coronary Syndrome. Ohashi H; Ando H; Takashima H; Waseda K; Shimoda M; Fujimoto M; Sawada H; Suzuki A; Sakurai S; Nakano Y; Amano T Circ J; 2019 Nov; 83(12):2505-2511. PubMed ID: 31611536 [TBL] [Abstract][Full Text] [Related]
71. In vivo vulnerability grading system of plaques causing acute coronary syndromes: An intravascular imaging study. Prati F; Gatto L; Romagnoli E; Limbruno U; Fineschi M; Marco V; Albertucci M; Tamburino C; Crea F; Alfonso F; Arbustini E Int J Cardiol; 2018 Oct; 269():350-355. PubMed ID: 30001943 [TBL] [Abstract][Full Text] [Related]
72. Automated characterisation of lipid core plaques in vivo by quantitative optical coherence tomography tissue type imaging. Gnanadesigan M; Kameyama T; Karanasos A; van Ditzhuijzen NS; van der Sijde JN; van Geuns RJ; Ligthart J; Witberg K; Ughi GJ; van der Steen AF; Regar E; van Soest G EuroIntervention; 2016 Dec; 12(12):1490-1497. PubMed ID: 27998841 [TBL] [Abstract][Full Text] [Related]
73. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. Kubo T; Imanishi T; Takarada S; Kuroi A; Ueno S; Yamano T; Tanimoto T; Matsuo Y; Masho T; Kitabata H; Tsuda K; Tomobuchi Y; Akasaka T J Am Coll Cardiol; 2007 Sep; 50(10):933-9. PubMed ID: 17765119 [TBL] [Abstract][Full Text] [Related]
74. A new method for IVUS-based coronary artery disease risk stratification: A link between coronary & carotid ultrasound plaque burdens. Araki T; Ikeda N; Shukla D; Londhe ND; Shrivastava VK; Banchhor SK; Saba L; Nicolaides A; Shafique S; Laird JR; Suri JS Comput Methods Programs Biomed; 2016 Feb; 124():161-79. PubMed ID: 26707374 [TBL] [Abstract][Full Text] [Related]
75. Clinical determinants of coronary artery disease burden and vulnerability using optical coherence tomography co-registered with intravascular ultrasound. Zhang W; Mintz GS; Cao Y; Matsumura M; Lee T; Hoshino M; Usui E; Kanaji Y; Murai T; Yonetsu T; Kakuta T; Maehara A Coron Artery Dis; 2022 Mar; 33(2):114-124. PubMed ID: 34411011 [TBL] [Abstract][Full Text] [Related]
76. Adoption of a new automated optical coherence tomography software to obtain a lipid plaque spread-out plot. Isidori F; Lella E; Marco V; Albertucci M; Ozaki Y; La Manna A; Biccirè FG; Romagnoli E; Bourantas CV; Paoletti G; Fabbiocchi F; Gatto L; Budassi S; Sticchi A; Burzotta F; Taglieri N; Calligaris G; Arbustini E; Alfonso F; Prati F Int J Cardiovasc Imaging; 2021 Nov; 37(11):3129-3135. PubMed ID: 34292435 [TBL] [Abstract][Full Text] [Related]
77. Optical coherence tomography enables more accurate detection of functionally significant intermediate non-left main coronary artery stenoses than intravascular ultrasound: A meta-analysis of 6919 patients and 7537 lesions. Ramasamy A; Chen Y; Zanchin T; Jones DA; Rathod K; Jin C; Onuma Y; Zhang YJ; Amersey R; Westwood M; Ozkor M; O'Mahony C; Lansky A; Crake T; Serruys PW; Mathur A; Baumbach A; Bourantas CV Int J Cardiol; 2020 Feb; 301():226-234. PubMed ID: 31677827 [TBL] [Abstract][Full Text] [Related]
78. The Role of Intracoronary Plaque Imaging with Intravascular Ultrasound, Optical Coherence Tomography, and Near-Infrared Spectroscopy in Patients with Coronary Artery Disease. Hoang V; Grounds J; Pham D; Virani S; Hamzeh I; Qureshi AM; Lakkis N; Alam M Curr Atheroscler Rep; 2016 Sep; 18(9):57. PubMed ID: 27485540 [TBL] [Abstract][Full Text] [Related]