BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 33824210)

  • 1. Bifunctional Malic/Malolactic Enzyme Provides a Novel Mechanism for NADPH-Balancing in Bacillus subtilis.
    Hörl M; Fuhrer T; Zamboni N
    mBio; 2021 Apr; 12(2):. PubMed ID: 33824210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. YtsJ has the major physiological role of the four paralogous malic enzyme isoforms in Bacillus subtilis.
    Lerondel G; Doan T; Zamboni N; Sauer U; Aymerich S
    J Bacteriol; 2006 Jul; 188(13):4727-36. PubMed ID: 16788182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Malate metabolism in Bacillus subtilis: distinct roles for three classes of malate-oxidizing enzymes.
    Meyer FM; Stülke J
    FEMS Microbiol Lett; 2013 Feb; 339(1):17-22. PubMed ID: 23136871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 13C-flux analysis reveals NADPH-balancing transhydrogenation cycles in stationary phase of nitrogen-starving Bacillus subtilis.
    Rühl M; Le Coq D; Aymerich S; Sauer U
    J Biol Chem; 2012 Aug; 287(33):27959-70. PubMed ID: 22740702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic fluxes in riboflavin-producing Bacillus subtilis.
    Sauer U; Hatzimanikatis V; Bailey JE; Hochuli M; Szyperski T; Wüthrich K
    Nat Biotechnol; 1997 May; 15(5):448-52. PubMed ID: 9131624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different biochemical mechanisms ensure network-wide balancing of reducing equivalents in microbial metabolism.
    Fuhrer T; Sauer U
    J Bacteriol; 2009 Apr; 191(7):2112-21. PubMed ID: 19181802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reassessment of the transhydrogenase/malate shunt pathway in Clostridium thermocellum ATCC 27405 through kinetic characterization of malic enzyme and malate dehydrogenase.
    Taillefer M; Rydzak T; Levin DB; Oresnik IJ; Sparling R
    Appl Environ Microbiol; 2015 Apr; 81(7):2423-32. PubMed ID: 25616802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical properties and physiological roles of NADP-dependent malic enzyme in Escherichia coli.
    Wang B; Wang P; Zheng E; Chen X; Zhao H; Song P; Su R; Li X; Zhu G
    J Microbiol; 2011 Oct; 49(5):797-802. PubMed ID: 22068497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Change in Cofactor Specificity of Oxidoreductases by Adaptive Evolution of an Escherichia coli NADPH-Auxotrophic Strain.
    Bouzon M; Döring V; Dubois I; Berger A; Stoffel GMM; Calzadiaz Ramirez L; Meyer SN; Fouré M; Roche D; Perret A; Erb TJ; Bar-Even A; Lindner SN
    mBio; 2021 Aug; 12(4):e0032921. PubMed ID: 34399608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of malic enzymes leads to metabolic imbalance and altered levels of trehalose and putrescine in the bacterium Sinorhizobium meliloti.
    Zhang Y; Smallbone LA; diCenzo GC; Morton R; Finan TM
    BMC Microbiol; 2016 Jul; 16(1):163. PubMed ID: 27456220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic fluxes during strong carbon catabolite repression by malate in Bacillus subtilis.
    Kleijn RJ; Buescher JM; Le Chat L; Jules M; Aymerich S; Sauer U
    J Biol Chem; 2010 Jan; 285(3):1587-96. PubMed ID: 19917605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial malate dehydrogenase, decarboxylating ("malic" enzyme) and transhydrogenase activities of adult Hymenolepis microstoma (Cestoda).
    Fioravanti CF
    J Parasitol; 1982 Apr; 68(2):213-20. PubMed ID: 7077455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modular pathway engineering of key carbon-precursor supply-pathways for improved N-acetylneuraminic acid production in Bacillus subtilis.
    Zhang X; Liu Y; Liu L; Wang M; Li J; Du G; Chen J
    Biotechnol Bioeng; 2018 Sep; 115(9):2217-2231. PubMed ID: 29896807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alteration of reducing powers in an isogenic phosphoglucose isomerase (pgi)-disrupted Escherichia coli expressing NAD(P)-dependent malic enzymes and NADP-dependent glyceraldehyde 3-phosphate dehydrogenase.
    Kim S; Lee CH; Nam SW; Kim P
    Lett Appl Microbiol; 2011 May; 52(5):433-40. PubMed ID: 21272045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directed evolution of thermotolerant malic enzyme for improved malate production.
    Morimoto Y; Honda K; Ye X; Okano K; Ohtake H
    J Biosci Bioeng; 2014 Feb; 117(2):147-152. PubMed ID: 23932397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic Characterization and Coenzyme Specificity Conversion of a Novel Dimeric Malate Dehydrogenase from Bacillus subtilis.
    Ge YD; Guo YT; Jiang LL; Wang HH; Hou SL; Su FZ
    Protein J; 2023 Feb; 42(1):14-23. PubMed ID: 36534341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The NADP-dependent malic enzyme MaeB is a central metabolic hub controlled by the acetyl-CoA to CoASH ratio.
    Huergo LF; Araújo GAT; Santos ASR; Gerhardt ECM; Pedrosa FO; Souza EM; Forchhammer K
    Biochim Biophys Acta Proteins Proteom; 2020 Sep; 1868(9):140462. PubMed ID: 32485238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fumarase activity in NAD-dependent malic enzyme, MaeA, from Escherichia coli.
    Afzal AR; Jeon J; Jung CH
    Biochem Biophys Res Commun; 2023 Oct; 678():144-147. PubMed ID: 37634412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulatory properties of malic enzyme in the oleaginous yeast, Yarrowia lipolytica, and its non-involvement in lipid accumulation.
    Zhang H; Zhang L; Chen H; Chen YQ; Ratledge C; Song Y; Chen W
    Biotechnol Lett; 2013 Dec; 35(12):2091-8. PubMed ID: 23892983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioreduction with efficient recycling of NADPH by coupled permeabilized microorganisms.
    Zhang W; O'Connor K; Wang DI; Li Z
    Appl Environ Microbiol; 2009 Feb; 75(3):687-94. PubMed ID: 19047388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.