BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 33824320)

  • 1. Direct detection of coupled proton and electron transfers in human manganese superoxide dismutase.
    Azadmanesh J; Lutz WE; Coates L; Weiss KL; Borgstahl GEO
    Nat Commun; 2021 Apr; 12(1):2079. PubMed ID: 33824320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox manipulation of the manganese metal in human manganese superoxide dismutase for neutron diffraction.
    Azadmanesh J; Lutz WE; Weiss KL; Coates L; Borgstahl GEO
    Acta Crystallogr F Struct Biol Commun; 2018 Oct; 74(Pt 10):677-687. PubMed ID: 30279321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton-coupled electron transfer in Fe-superoxide dismutase and Mn-superoxide dismutase.
    Miller AF; Padmakumar K; Sorkin DL; Karapetian A; Vance CK
    J Inorg Biochem; 2003 Jan; 93(1-2):71-83. PubMed ID: 12538055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the active site of human manganese superoxide dismutase: the role of glutamine 143.
    Hsieh Y; Guan Y; Tu C; Bratt PJ; Angerhofer A; Lepock JR; Hickey MJ; Tainer JA; Nick HS; Silverman DN
    Biochemistry; 1998 Apr; 37(14):4731-9. PubMed ID: 9537988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupled redox potentials in manganese and iron superoxide dismutases from reaction kinetics and density functional/electrostatics calculations.
    Han WG; Lovell T; Noodleman L
    Inorg Chem; 2002 Jan; 41(2):205-18. PubMed ID: 11800609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical studies of manganese and iron superoxide dismutases: superoxide binding and superoxide oxidation.
    Abreu IA; Rodriguez JA; Cabelli DE
    J Phys Chem B; 2005 Dec; 109(51):24502-9. PubMed ID: 16375454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QM/MM Calculation of the Enzyme Catalytic Cycle Mechanism for Copper- and Zinc-Containing Superoxide Dismutase.
    Lintuluoto M; Yamada C; Lintuluoto JM
    J Phys Chem B; 2017 Aug; 121(30):7235-7246. PubMed ID: 28686842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How can a single second sphere amino acid substitution cause reduction midpoint potential changes of hundreds of millivolts?
    Yikilmaz E; Porta J; Grove LE; Vahedi-Faridi A; Bronshteyn Y; Brunold TC; Borgstahl GE; Miller AF
    J Am Chem Soc; 2007 Aug; 129(32):9927-40. PubMed ID: 17628062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of Y34F mutant human mitochondrial manganese superoxide dismutase and the functional role of tyrosine 34.
    Guan Y; Hickey MJ; Borgstahl GE; Hallewell RA; Lepock JR; O'Connor D; Hsieh Y; Nick HS; Silverman DN; Tainer JA
    Biochemistry; 1998 Apr; 37(14):4722-30. PubMed ID: 9537987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen bonding, solvent exchange, and coupled proton and electron transfer in the oxidation and reduction of redox-active tyrosine Y(Z) in Mn-depleted core complexes of photosystem II.
    Diner BA; Force DA; Randall DW; Britt RD
    Biochemistry; 1998 Dec; 37(51):17931-43. PubMed ID: 9922161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revealing the atomic and electronic mechanism of human manganese superoxide dismutase product inhibition.
    Borgstahl G; Azadmanesh J; Slobodnik K; Struble L; Lutz W; Coates L; Weiss K; Myles D; Kroll T
    Res Sq; 2024 Feb; ():. PubMed ID: 38405788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic pathway of manganese superoxide dismutase by direct observation of superoxide.
    Silverman DN; Nick HS
    Methods Enzymol; 2002; 349():61-74. PubMed ID: 11912930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox tuning over almost 1 V in a structurally conserved active site: lessons from Fe-containing superoxide dismutase.
    Miller AF
    Acc Chem Res; 2008 Apr; 41(4):501-10. PubMed ID: 18376853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of redox transitions and oxygen species binding in Mn centers by biologically significant ligands; model studies with [Mn]-bacteriochlorophyll a.
    Ashur I; Brandis A; Greenwald M; Vakrat-Haglili Y; Rosenbach-Belkin V; Scheer H; Scherz A
    J Am Chem Soc; 2003 Jul; 125(29):8852-61. PubMed ID: 12862482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutagenesis of a proton linkage pathway in Escherichia coli manganese superoxide dismutase.
    Whittaker MM; Whittaker JW
    Biochemistry; 1997 Jul; 36(29):8923-31. PubMed ID: 9220980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel insights into the basis for Escherichia coli superoxide dismutase's metal ion specificity from Mn-substituted FeSOD and its very high E(m).
    Vance CK; Miller AF
    Biochemistry; 2001 Oct; 40(43):13079-87. PubMed ID: 11669646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Six-coordinate manganese(3+) in catalysis by yeast manganese superoxide dismutase.
    Sheng Y; Butler Gralla E; Schumacher M; Cascio D; Cabelli DE; Valentine JS
    Proc Natl Acad Sci U S A; 2012 Sep; 109(36):14314-9. PubMed ID: 22908245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revealing the atomic and electronic mechanism of human manganese superoxide dismutase product inhibition.
    Azadmanesh J; Slobodnik K; Struble LR; Lutz WE; Coates L; Weiss KL; Myles DAA; Kroll T; Borgstahl GEO
    bioRxiv; 2024 Jan; ():. PubMed ID: 38328249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Outer sphere mutations perturb metal reactivity in manganese superoxide dismutase.
    Edwards RA; Whittaker MM; Whittaker JW; Baker EN; Jameson GB
    Biochemistry; 2001 Jan; 40(1):15-27. PubMed ID: 11141052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preliminary neutron diffraction analysis of challenging human manganese superoxide dismutase crystals.
    Azadmanesh J; Trickel SR; Weiss KL; Coates L; Borgstahl GE
    Acta Crystallogr F Struct Biol Commun; 2017 Apr; 73(Pt 4):235-240. PubMed ID: 28368283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.