These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33824383)

  • 61. Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays.
    Kataja M; Hakala TK; Julku A; Huttunen MJ; van Dijken S; Törmä P
    Nat Commun; 2015 May; 6():7072. PubMed ID: 25947368
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Omnidirectional and compact transmissive chromatic polarizers based on a dielectric-metal-dielectric structure.
    Gao X; Wang Q; Cao S; Li R; Hong R; Zhang D
    Opt Express; 2020 Aug; 28(17):25073-25084. PubMed ID: 32907037
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Enhanced transmission modulation based on dielectric metasurfaces loaded with graphene.
    Argyropoulos C
    Opt Express; 2015 Sep; 23(18):23787-97. PubMed ID: 26368472
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Multiple Fano resonances excitation on all-dielectric nanohole arrays metasurfaces.
    Yang L; Yu S; Li H; Zhao T
    Opt Express; 2021 May; 29(10):14905-14916. PubMed ID: 33985202
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Collective electric and magnetic plasmonic resonances in spherical nanoclusters.
    Vallecchi A; Albani M; Capolino F
    Opt Express; 2011 Jan; 19(3):2754-72. PubMed ID: 21369097
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Analysis of the Limits of the Near-Field Produced by Nanoparticle Arrays.
    Manjavacas A; Zundel L; Sanders S
    ACS Nano; 2019 Sep; 13(9):10682-10693. PubMed ID: 31487460
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Polarization-selective dynamically tunable multispectral Fano resonances: decomposing of subgroup plasmonic resonances.
    Liu J; Zhao X; Gong R; Wu T; Gong C; Shao X
    Opt Express; 2015 Oct; 23(21):27343-53. PubMed ID: 26480396
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Longitudinal and transverse optical scattering asymmetry parameters for a dielectric cylinder in light-sheets of arbitrary wavefronts and polarization.
    Mitri FG
    Appl Opt; 2021 Feb; 60(6):1678-1685. PubMed ID: 33690505
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Metasurface integrated high energy efficient and high linearly polarized InGaN/GaN light emitting diode.
    Wang M; Xu F; Lin Y; Cao B; Chen L; Wang C; Wang J; Xu K
    Nanoscale; 2017 Jul; 9(26):9104-9111. PubMed ID: 28643832
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings.
    Grande M; Vincenti MA; Stomeo T; Bianco GV; de Ceglia D; Aközbek N; Petruzzelli V; Bruno G; De Vittorio M; Scalora M; D'Orazio A
    Opt Express; 2014 Dec; 22(25):31511-9. PubMed ID: 25607101
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Tunable graphene plasmonic Y-branch switch in the terahertz region using hexagonal boron nitride with electric and magnetic biasing.
    Farmani A; Yavarian M; Alighanbari A; Miri M; Sheikhi MH
    Appl Opt; 2017 Nov; 56(32):8931-8940. PubMed ID: 29131174
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles.
    Bakhti S; Tishchenko AV; Zambrana-Puyalto X; Bonod N; Dhuey SD; Schuck PJ; Cabrini S; Alayoglu S; Destouches N
    Sci Rep; 2016 Sep; 6():32061. PubMed ID: 27580515
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Broadband long-wave infrared metamaterial absorber based on single-sized cut-wire resonators.
    Qin Z; Meng D; Yang F; Shi X; Liang Z; Xu H; Smith DR; Liu Y
    Opt Express; 2021 Jun; 29(13):20275-20285. PubMed ID: 34266120
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Ultra-high extinction ratio micropolarizers using plasmonic lenses.
    Peltzer JJ; Flammer PD; Furtak TE; Collins RT; Hollingsworth RE
    Opt Express; 2011 Sep; 19(19):18072-9. PubMed ID: 21935173
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Two-dimensional scattering of a plane wave from a periodic array of dielectric cylinders with arbitrary shape.
    Yokota M; Sesay M
    J Opt Soc Am A Opt Image Sci Vis; 2008 Jul; 25(7):1691-6. PubMed ID: 18594626
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Atomically thin spherical shell-shaped superscatterers based on a Bohr model.
    Li R; Lin X; Lin S; Liu X; Chen H
    Nanotechnology; 2015 Dec; 26(50):505201. PubMed ID: 26580845
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Modeling and analysis of high-sensitivity refractive index sensors based on plasmonic absorbers with Fano response in the near-infrared spectral region.
    Tavakoli F; Zarrabi FB; Saghaei H
    Appl Opt; 2019 Jul; 58(20):5404-5414. PubMed ID: 31504008
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Layered plasmonic cloaks to tailor the optical scattering at the nanoscale.
    Monticone F; Argyropoulos C; Alù A
    Sci Rep; 2012; 2():912. PubMed ID: 23209872
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Electromagnetic field coupling characteristics in graphene plasmonic oligomers: from isolated to collective modes.
    Ren J; Qiu W; Chen H; Qiu P; Lin Z; Wang JX; Kan Q; Pan JQ
    Phys Chem Chem Phys; 2017 Jun; 19(22):14671-14679. PubMed ID: 28537636
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Engineering novel tunable optical high-Q nanoparticle array filters for a wide range of wavelengths.
    Utyushev AD; Isaev IL; Gerasimov VS; Ershov AE; Zakomirnyi VI; Rasskazov IL; Polyutov SP; Ågren H; Karpov SV
    Opt Express; 2020 Jan; 28(2):1426-1438. PubMed ID: 32121854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.