BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 33825006)

  • 21. RNA origami: design, simulation and application.
    Poppleton E; Urbanek N; Chakraborty T; Griffo A; Monari L; Göpfrich K
    RNA Biol; 2023 Jan; 20(1):510-524. PubMed ID: 37498217
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA Aptamers for the Functionalisation of DNA Origami Nanostructures.
    Sakai Y; Islam MS; Adamiak M; Shiu SC; Tanner JA; Heddle JG
    Genes (Basel); 2018 Nov; 9(12):. PubMed ID: 30477184
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Framework-Nucleic-Acid-Enabled Biosensor Development.
    Yang F; Li Q; Wang L; Zhang GJ; Fan C
    ACS Sens; 2018 May; 3(5):903-919. PubMed ID: 29722523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DNA origami-based protein networks: from basic construction to emerging applications.
    Kong G; Xiong M; Liu L; Hu L; Meng HM; Ke G; Zhang XB; Tan W
    Chem Soc Rev; 2021 Feb; 50(3):1846-1873. PubMed ID: 33306073
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DNA origami: a tool to evaluate and harness transcription factors.
    Mentis AA; Papavassiliou KA; Papavassiliou AG
    J Mol Med (Berl); 2023 Dec; 101(12):1493-1498. PubMed ID: 37813986
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Beyond the Fold: Emerging Biological Applications of DNA Origami.
    Chandrasekaran AR; Anderson N; Kizer M; Halvorsen K; Wang X
    Chembiochem; 2016 Jun; 17(12):1081-9. PubMed ID: 26928725
    [TBL] [Abstract][Full Text] [Related]  

  • 27. FRET-Mediated Observation of Protein-Triggered Conformational Changes in DNA Nanostructures.
    Shiu SC; Sakai Y; Tanner JA; Heddle JG
    Methods Mol Biol; 2021; 2208():69-80. PubMed ID: 32856256
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Building DNA nanostructures for molecular computation, templated assembly, and biological applications.
    Rangnekar A; LaBean TH
    Acc Chem Res; 2014 Jun; 47(6):1778-88. PubMed ID: 24720350
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nucleic acid based molecular devices.
    Krishnan Y; Simmel FC
    Angew Chem Int Ed Engl; 2011 Mar; 50(14):3124-56. PubMed ID: 21432950
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA origami book biosensor for multiplex detection of cancer-associated nucleic acids.
    Domljanovic I; Loretan M; Kempter S; Acuna GP; Kocabey S; Ruegg C
    Nanoscale; 2022 Oct; 14(41):15432-15441. PubMed ID: 36219167
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Application of DNA origami in nanobiomedicine].
    Wang J; Zhang P; Xia Q; Wei Y; Chen W; Wang J; Li P; Li B; Zhou X
    Nan Fang Yi Ke Da Xue Xue Bao; 2021 Jun; 41(6):960-964. PubMed ID: 34238752
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Organizing DNA origami tiles into larger structures using preformed scaffold frames.
    Zhao Z; Liu Y; Yan H
    Nano Lett; 2011 Jul; 11(7):2997-3002. PubMed ID: 21682348
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatial organization based reciprocal switching of enzyme-free nucleic acid circuits.
    Tang Y; Zhu Z; Lu B; Li B
    Chem Commun (Camb); 2016 Oct; 52(88):13043-13046. PubMed ID: 27757452
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Programming the Curvatures in Reconfigurable DNA Domino Origami by Using Asymmetric Units.
    Wang D; Yu L; Ji B; Chang S; Song J; Ke Y
    Nano Lett; 2020 Nov; 20(11):8236-8241. PubMed ID: 33095024
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical Voltage Sensing Using DNA Origami.
    Hemmig EA; Fitzgerald C; Maffeo C; Hecker L; Ochmann SE; Aksimentiev A; Tinnefeld P; Keyser UF
    Nano Lett; 2018 Mar; 18(3):1962-1971. PubMed ID: 29430924
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the Stability of DNA Origami Nanostructures in Low-Magnesium Buffers.
    Kielar C; Xin Y; Shen B; Kostiainen MA; Grundmeier G; Linko V; Keller A
    Angew Chem Int Ed Engl; 2018 Jul; 57(30):9470-9474. PubMed ID: 29799663
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetically Encoded DNA Origami for Gene Therapy In Vivo.
    Wu X; Yang C; Wang H; Lu X; Shang Y; Liu Q; Fan J; Liu J; Ding B
    J Am Chem Soc; 2023 Apr; 145(16):9343-9353. PubMed ID: 37070733
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent progress in DNA origami technology.
    Endo M; Sugiyama H
    Curr Protoc Nucleic Acid Chem; 2011 Jun; Chapter 12():Unit12.8. PubMed ID: 21638269
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gene-encoding DNA origami for mammalian cell expression.
    Kretzmann JA; Liedl A; Monferrer A; Mykhailiuk V; Beerkens S; Dietz H
    Nat Commun; 2023 Feb; 14(1):1017. PubMed ID: 36823187
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Scaffolding along nucleic acid duplexes using 2'-amino-locked nucleic acids.
    Astakhova IK; Wengel J
    Acc Chem Res; 2014 Jun; 47(6):1768-77. PubMed ID: 24749544
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.