These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 33825449)
1. Directly Patterning Conductive Polymer Electrodes on Organic Semiconductor via In Situ Polymerization in Microchannels for High-Performance Organic Transistors. Wang S; Wang Z; Huang Y; Hu Y; Yuan L; Guo S; Zheng L; Chen M; Yang C; Zheng Y; Qi J; Yu L; Li H; Wang W; Ji D; Chen X; Li J; Li L; Hu W ACS Appl Mater Interfaces; 2021 Apr; 13(15):17852-17860. PubMed ID: 33825449 [TBL] [Abstract][Full Text] [Related]
2. Highly stable and flexible transparent conductive polymer electrode patterns for large-scale organic transistors. Zhao P; Tang Q; Zhao X; Tong Y; Liu Y J Colloid Interface Sci; 2018 Jun; 520():58-63. PubMed ID: 29529461 [TBL] [Abstract][Full Text] [Related]
3. High-performance and stable organic transistors and circuits with patterned polypyrrole electrodes. Li L; Jiang L; Wang W; Du C; Fuchs H; Hu W; Chi L Adv Mater; 2012 Apr; 24(16):2159-64. PubMed ID: 22431264 [TBL] [Abstract][Full Text] [Related]
4. Tuning the Work Function of Printed Polymer Electrodes by Introducing a Fluorinated Polymer To Enhance the Operational Stability in Bottom-Contact Organic Field-Effect Transistors. Kim SH; Kim J; Nam S; Lee HS; Lee SW; Jang J ACS Appl Mater Interfaces; 2017 Apr; 9(14):12637-12646. PubMed ID: 28319362 [TBL] [Abstract][Full Text] [Related]
5. Solution-Processed Organic and Halide Perovskite Transistors on Hydrophobic Surfaces. Ward JW; Smith HL; Zeidell A; Diemer PJ; Baker SR; Lee H; Payne MM; Anthony JE; Guthold M; Jurchescu OD ACS Appl Mater Interfaces; 2017 May; 9(21):18120-18126. PubMed ID: 28485580 [TBL] [Abstract][Full Text] [Related]
6. Facile Approach to Fabricating Stretchable Organic Transistors with Laser-Patterned Ag Nanowire Electrodes. Song R; Yao S; Liu Y; Wang H; Dong J; Zhu Y; O'Connor BT ACS Appl Mater Interfaces; 2020 Nov; 12(45):50675-50683. PubMed ID: 33136358 [TBL] [Abstract][Full Text] [Related]
7. Transfer-Printing of Insoluble Conducting Polymer for Soft 3D Conformal All-Organic Transistors. Zhao P; Wang X; Tong Y; Zhao X; Tang Q; Liu Y Small; 2024 Jul; 20(28):e2309263. PubMed ID: 38321840 [TBL] [Abstract][Full Text] [Related]
8. Facile Approach to Conductive Polymer Microelectrodes for Flexible Electronics. Wang Z; Cui H; Li S; Feng X; Aghassi-Hagmann J; Azizian S; Levkin PA ACS Appl Mater Interfaces; 2021 May; 13(18):21661-21668. PubMed ID: 33905239 [TBL] [Abstract][Full Text] [Related]
10. Hysteresis-Free, High-Performance Polymer-Dielectric Organic Field-Effect Transistors Enabled by Supercritical Fluid. Shi Y; Zheng Y; Wang J; Zhao R; Wang T; Zhao C; Chang KC; Meng H; Wang X Research (Wash D C); 2020; 2020():6587102. PubMed ID: 33015635 [TBL] [Abstract][Full Text] [Related]
11. Surface-directed molecular assembly of pentacene on monolayer graphene for high-performance organic transistors. Lee WH; Park J; Sim SH; Lim S; Kim KS; Hong BH; Cho K J Am Chem Soc; 2011 Mar; 133(12):4447-54. PubMed ID: 21381751 [TBL] [Abstract][Full Text] [Related]
12. Interface engineering: an effective approach toward high-performance organic field-effect transistors. Di CA; Liu Y; Yu G; Zhu D Acc Chem Res; 2009 Oct; 42(10):1573-83. PubMed ID: 19645474 [TBL] [Abstract][Full Text] [Related]
13. Understanding molecular surface doping of large bandgap organic semiconductors and overcoming the contact/access resistance in organic field-effect transistors. Pei K; Lau AHY; Chan PKL Phys Chem Chem Phys; 2020 Apr; 22(13):7100-7109. PubMed ID: 32202576 [TBL] [Abstract][Full Text] [Related]
14. Relieving the Photosensitivity of Organic Field-Effect Transistors. Liu J; Jiang L; Shi J; Li C; Shi Y; Tan J; Li H; Jiang H; Hu Y; Liu X; Yu J; Wei Z; Jiang L; Hu W Adv Mater; 2020 Jan; 32(4):e1906122. PubMed ID: 31782561 [TBL] [Abstract][Full Text] [Related]
15. Dry Lithography Patterning of Monolayer Flexible Field Effect Transistors by 2D Mica Stamping. Zou D; He Z; Chen M; Yan L; Guo Y; Gao G; Li C; Piao Y; Cheng X; Chan PKL Adv Mater; 2023 May; 35(20):e2211600. PubMed ID: 36841244 [TBL] [Abstract][Full Text] [Related]
16. "Liquid-liquid-solid"-type superoleophobic surfaces to pattern polymeric semiconductors towards high-quality organic field-effect transistors. Wu Y; Su B; Jiang L; Heeger AJ Adv Mater; 2013 Dec; 25(45):6526-33. PubMed ID: 23996679 [TBL] [Abstract][Full Text] [Related]
17. Bar-Coated Ultrathin Semiconductors from Polymer Blend for One-Step Organic Field-Effect Transistors. Ge F; Liu Z; Lee SB; Wang X; Zhang G; Lu H; Cho K; Qiu L ACS Appl Mater Interfaces; 2018 Jun; 10(25):21510-21517. PubMed ID: 29873226 [TBL] [Abstract][Full Text] [Related]
18. Highly Conductive Ultrathin Layers of Conjugated Polymers for Metal-Free Coplanar Transistors with Single-Polymer Transport Layers. Shen Z; Lu W; Wei P; Zhu Y; Jiang Y; Bu L; Lu G ACS Appl Mater Interfaces; 2023 Mar; 15(9):12099-12108. PubMed ID: 36808932 [TBL] [Abstract][Full Text] [Related]
19. A simple and robust approach to reducing contact resistance in organic transistors. Lamport ZA; Barth KJ; Lee H; Gann E; Engmann S; Chen H; Guthold M; McCulloch I; Anthony JE; Richter LJ; DeLongchamp DM; Jurchescu OD Nat Commun; 2018 Dec; 9(1):5130. PubMed ID: 30510263 [TBL] [Abstract][Full Text] [Related]
20. Charge injection engineering of ambipolar field-effect transistors for high-performance organic complementary circuits. Baeg KJ; Kim J; Khim D; Caironi M; Kim DY; You IK; Quinn JR; Facchetti A; Noh YY ACS Appl Mater Interfaces; 2011 Aug; 3(8):3205-14. PubMed ID: 21805991 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]