These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 33825472)

  • 1. Extreme Parametric Sensitivity in the Steady-State Photoisomerization of Two-Dimensional Model Rhodopsin.
    Chuang C; Brumer P
    J Phys Chem Lett; 2021 Apr; 12(14):3618-3624. PubMed ID: 33825472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optomechanical Control of Quantum Yield in Trans-Cis Ultrafast Photoisomerization of a Retinal Chromophore Model.
    Valentini A; Rivero D; Zapata F; García-Iriepa C; Marazzi M; Palmeiro R; Fdez Galván I; Sampedro D; Olivucci M; Frutos LM
    Angew Chem Int Ed Engl; 2017 Mar; 56(14):3842-3846. PubMed ID: 28251753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Floquet Study of Quantum Control of the Cis-Trans Photoisomerization of Rhodopsin.
    Videla PE; Markmann A; Batista VS
    J Chem Theory Comput; 2018 Mar; 14(3):1198-1205. PubMed ID: 29425032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steady State Photoisomerization Quantum Yield of Model Rhodopsin: Insights from Wavepacket Dynamics?
    Chuang C; Brumer P
    J Phys Chem Lett; 2022 Jun; 13(22):4963-4970. PubMed ID: 35639452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum-classical model of retinal photoisomerization reaction in visual pigment rhodopsin.
    Lakhno VD; Shigaev AS; Feldman TB; Nadtochenko VA; Ostrovsky MA
    Dokl Biochem Biophys; 2016 Nov; 471(1):435-439. PubMed ID: 28058680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light penetration and photoisomerization in rhodopsin studied by numerical simulations and double-quantum solid-state NMR spectroscopy.
    Concistrè M; Gansmüller A; McLean N; Johannessen OG; Marín Montesinos I; Bovee-Geurts PH; Brown RC; DeGrip WJ; Levitt MH
    J Am Chem Soc; 2009 May; 131(17):6133-40. PubMed ID: 19354207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitation of biomolecules with incoherent light: quantum yield for the photoisomerization of model retinal.
    Tscherbul TV; Brumer P
    J Phys Chem A; 2014 May; 118(17):3100-11. PubMed ID: 24684415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics of trans-cis isomerization in bathorhodopsin.
    Birge RR; Hubbard LM
    Biophys J; 1981 Jun; 34(3):517-34. PubMed ID: 7248472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impacts of retinal polyene (de)methylation on the photoisomerization mechanism and photon energy storage of rhodopsin.
    Walczak E; Andruniów T
    Phys Chem Chem Phys; 2015 Jul; 17(26):17169-81. PubMed ID: 26074351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum coherence effects in natural light-induced processes: cis-trans photoisomerization of model retinal under incoherent excitation.
    Tscherbul TV; Brumer P
    Phys Chem Chem Phys; 2015 Dec; 17(46):30904-13. PubMed ID: 26022517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonadiabatic ab initio dynamics of a model protonated Schiff base of 9-cis retinal.
    Chung WC; Nanbu S; Ishida T
    J Phys Chem A; 2010 Aug; 114(32):8190-201. PubMed ID: 20666503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The nature of the primary photochemical events in rhodopsin and isorhodopsin.
    Birge RR; Einterz CM; Knapp HM; Murray LP
    Biophys J; 1988 Mar; 53(3):367-85. PubMed ID: 2964878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QM/MM trajectory surface hopping approach to photoisomerization of rhodopsin and isorhodopsin: the origin of faster and more efficient isomerization for rhodopsin.
    Chung WC; Nanbu S; Ishida T
    J Phys Chem B; 2012 Jul; 116(28):8009-23. PubMed ID: 22783826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the intersection space associated with ZIE photoisomerization of retinal in rhodopsin proteins.
    Migani A; Sinicropi A; Ferré N; Cembran A; Garavelli M; Olivucci M
    Faraday Discuss; 2004; 127():179-91. PubMed ID: 15471346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling time-resolved two-dimensional electronic spectroscopy of the primary photoisomerization event in rhodopsin.
    Rivalta I; Nenov A; Weingart O; Cerullo G; Garavelli M; Mukamel S
    J Phys Chem B; 2014 Jul; 118(28):8396-405. PubMed ID: 24794143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced photoswitching of bridged azobenzene studied by nonadiabatic ab initio simulation.
    Böckmann M; Doltsinis NL; Marx D
    J Chem Phys; 2012 Dec; 137(22):22A505. PubMed ID: 23249042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavelength dependent cis-trans isomerization in vision.
    Kim JE; Tauber MJ; Mathies RA
    Biochemistry; 2001 Nov; 40(46):13774-8. PubMed ID: 11705366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of protein environment on photoexcitation properties of retinal.
    Kaila VR; Send R; Sundholm D
    J Phys Chem B; 2012 Feb; 116(7):2249-58. PubMed ID: 22166007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The molecular mechanism of thermal noise in rod photoreceptors.
    Gozem S; Schapiro I; Ferré N; Olivucci M
    Science; 2012 Sep; 337(6099):1225-8. PubMed ID: 22955833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lack of evidence for phase-only control of retinal photoisomerization in the strict one-photon limit.
    Liebel M; Kukura P
    Nat Chem; 2017 Jan; 9(1):45-49. PubMed ID: 27995922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.