These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33826298)

  • 21. Nanochannels of Covalent Organic Frameworks for Chiral Selective Transmembrane Transport of Amino Acids.
    Yuan C; Wu X; Gao R; Han X; Liu Y; Long Y; Cui Y
    J Am Chem Soc; 2019 Dec; 141(51):20187-20197. PubMed ID: 31789030
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioinspired γ-Cyclodextrin Pseudorotaxane Assembly Nanochannel for Selective Amino Acid Transport.
    Zhang X; Zhang F; Zhu F; Zhang X; Tian D; Johnson RP; Li H
    ACS Appl Bio Mater; 2019 Aug; 2(8):3607-3612. PubMed ID: 35030747
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electricity-Wettability Controlled Fast Transmission of Dopamine in Nanochannels.
    Fang Y; Xu W; Yang L; Qu H; Wang W; Zhang S; Li H
    Small; 2023 Apr; 19(15):e2205488. PubMed ID: 36617514
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of hydrogel-coated single conical nanochannels exhibiting controllable ion rectification characteristics.
    Wang L; Zhang H; Yang Z; Zhou J; Wen L; Li L; Jiang L
    Phys Chem Chem Phys; 2015 Mar; 17(9):6367-73. PubMed ID: 25649179
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering artificial switchable nanochannels for selective monitoring of nitric oxide release from living cells.
    Ge L; Wu J; Wang C; Zhang F; Liu Z
    Biosens Bioelectron; 2020 Dec; 169():112606. PubMed ID: 32947083
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Planar Chiral Organoboranes with Thermoresponsive Emission and Circularly Polarized Luminescence: Integration of Pillar[5]arenes with Boron Chemistry.
    Chen JF; Yin X; Wang B; Zhang K; Meng G; Zhang S; Shi Y; Wang N; Wang S; Chen P
    Angew Chem Int Ed Engl; 2020 Jul; 59(28):11267-11272. PubMed ID: 32220121
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface mediated chiral interactions between cyclodextrins and propranolol enantiomers: a SERS and DFT study.
    Stiufiuc R; Iacovita C; Stiufiuc G; Bodoki E; Chis V; Lucaciu CM
    Phys Chem Chem Phys; 2015 Jan; 17(2):1281-9. PubMed ID: 25420457
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineered Ionic Gates for Ion Conduction Based on Sodium and Potassium Activated Nanochannels.
    Liu Q; Xiao K; Wen L; Lu H; Liu Y; Kong XY; Xie G; Zhang Z; Bo Z; Jiang L
    J Am Chem Soc; 2015 Sep; 137(37):11976-83. PubMed ID: 26340444
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogen peroxide sensing with horseradish peroxidase-modified polymer single conical nanochannels.
    Ali M; Tahir MN; Siwy Z; Neumann R; Tremel W; Ensinger W
    Anal Chem; 2011 Mar; 83(5):1673-80. PubMed ID: 21294554
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chiral PEDOT-Based Enantioselective Electrode Modification Material for Chiral Electrochemical Sensing: Mechanism and Model of Chiral Recognition.
    Dong L; Zhang Y; Duan X; Zhu X; Sun H; Xu J
    Anal Chem; 2017 Sep; 89(18):9695-9702. PubMed ID: 28809103
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Learning from nature: building bio-inspired smart nanochannels.
    Hou X; Jiang L
    ACS Nano; 2009 Nov; 3(11):3339-42. PubMed ID: 19928930
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rational design of mesoporous chiral MOFs as reactive pockets in nanochannels for enzyme-free identification of monosaccharide enantiomers.
    Guo J; Liu X; Zhao J; Xu H; Gao Z; Wu ZQ; Song YY
    Chem Sci; 2023 Feb; 14(7):1742-1751. PubMed ID: 36819857
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrical Field Regulation of Ion Transport in Polyethylene Terephthalate Nanochannels.
    Li Y; Du G; Mao G; Guo J; Zhao J; Wu R; Liu W
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):38055-38060. PubMed ID: 31553570
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective chiral recognition of alanine enantiomers by chiral calix[4]arene coated quartz crystal microbalance sensors.
    Temel F; Erdemir S; Tabakci B; Akpinar M; Tabakci M
    Anal Bioanal Chem; 2019 May; 411(12):2675-2685. PubMed ID: 30931505
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tailored Chiral Copper Selenide Nanochannels for Ultrasensitive Enantioselective Recognition and Detection.
    Meng D; Hao C; Cai J; Ma W; Chen C; Xu C; Xu L; Kuang H
    Angew Chem Int Ed Engl; 2021 Nov; 60(47):24997-25004. PubMed ID: 34463011
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enantioselective fluorescent sensors: a tale of BINOL.
    Pu L
    Acc Chem Res; 2012 Feb; 45(2):150-63. PubMed ID: 21834528
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Smooth Muscle Cell-Mimetic CO-Regulated Ion Nanochannels.
    Xu Y; Sui X; Jiang J; Zhai J; Gao L
    Adv Mater; 2016 Dec; 28(48):10780-10785. PubMed ID: 27747946
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanophotonic Platforms for Chiral Sensing and Separation.
    Solomon ML; Saleh AAE; Poulikakos LV; Abendroth JM; Tadesse LF; Dionne JA
    Acc Chem Res; 2020 Mar; 53(3):588-598. PubMed ID: 31913015
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a New Method Based on Chiral Ligand-Exchange Chromatography for the Enantioseparation of Propranolol.
    Alizadeh T
    Iran J Pharm Res; 2017; 16(3):1037-1047. PubMed ID: 29201092
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gold nanodendrite-based differential potential ratiometric sensing strategy for enantioselective recognition of DOPA.
    Lian H; Huang S; Wei X; Guo J; Sun X; Liu B
    Talanta; 2020 Apr; 210():120654. PubMed ID: 31987204
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.