BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33826517)

  • 1. Adaptive Human Force Scaling via Admittance Control for Physical Human-Robot Interaction.
    Hamad YM; Aydin Y; Basdogan C
    IEEE Trans Haptics; 2021; 14(4):750-761. PubMed ID: 33826517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Speed-accuracy characteristics of human-machine cooperative manipulation using virtual fixtures with variable admittance.
    Marayong P; Okamura AM
    Hum Factors; 2004; 46(3):518-32. PubMed ID: 15573549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An admittance-controlled amplified force tracking scheme for collaborative lumbar puncture surgical robot system.
    Li H; Nie X; Duan D; Li Y; Zhang J; Zhou M; Magid E
    Int J Med Robot; 2022 Oct; 18(5):e2428. PubMed ID: 35649724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variable Admittance Control Based on Fuzzy Reinforcement Learning for Minimally Invasive Surgery Manipulator.
    Du Z; Wang W; Yan Z; Dong W; Wang W
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28417944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cognition-based variable admittance control for active compliance in flexible manipulation of heavy objects with a power-assist robotic system.
    Mizanoor Rahman SM; Ikeura R
    Robotics Biomim; 2018; 5(1):7. PubMed ID: 30524934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variable Admittance Control Based on Human-Robot Collaboration Observer Using Frequency Analysis for Sensitive and Safe Interaction.
    Kim H; Yang W
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-carrying an object by robot in cooperation with humans using visual and force sensing.
    Yu X; Zhang S; Liu Y; Li B; Ma Y; Min G
    Philos Trans A Math Phys Eng Sci; 2021 Oct; 379(2207):20200373. PubMed ID: 34398646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fitts' law in the presence of interface inertia.
    Sutjipto S; Lai Y; Carmichael MG; Paul G
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4749-4752. PubMed ID: 33019052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual Mode
    Li T; Meng X; Tavakoli M
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Online Stability in Human-Robot Cooperation with Admittance Control.
    Dimeas F; Aspragathos N
    IEEE Trans Haptics; 2016; 9(2):267-78. PubMed ID: 26780819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance-Based Hybrid Control of a Cable-Driven Upper-Limb Rehabilitation Robot.
    Li X; Yang Q; Song R
    IEEE Trans Biomed Eng; 2021 Apr; 68(4):1351-1359. PubMed ID: 32997619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot.
    Ju MS; Lin CC; Lin DH; Hwang IS; Chen SM
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):349-58. PubMed ID: 16200758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reference Trajectory Reshaping Optimization and Control of Robotic Exoskeletons for Human-Robot Co-Manipulation.
    Wu X; Li Z; Kan Z; Gao H
    IEEE Trans Cybern; 2020 Aug; 50(8):3740-3751. PubMed ID: 31484148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive-Constrained Impedance Control for Human-Robot Co-Transportation.
    Yu X; Li B; He W; Feng Y; Cheng L; Silvestre C
    IEEE Trans Cybern; 2022 Dec; 52(12):13237-13249. PubMed ID: 34570713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Admittance Control Dynamic Models for Transparent Free-Motion Human-Robot Interaction.
    Bitikofer CK; Wolbrecht ET; Maura RM; Perry JC
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Integrated Framework for Human-Robot Collaborative Manipulation.
    Sheng W; Thobbi A; Gu Y
    IEEE Trans Cybern; 2015 Oct; 45(10):2030-41. PubMed ID: 25373136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel hybrid adaptive controller for manipulation in complex perturbation environments.
    Smith AM; Yang C; Ma H; Culverhouse P; Cangelosi A; Burdet E
    PLoS One; 2015; 10(6):e0129281. PubMed ID: 26029916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Human-Robot Co-Manipulation Approach Based on Human Sensorimotor Information.
    Peternel L; Tsagarakis N; Ajoudani A
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):811-822. PubMed ID: 28436880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable Physical Human-Robot Interaction Using Fractional Order Admittance Control.
    Aydin Y; Tokatli O; Patoglu V; Basdogan C
    IEEE Trans Haptics; 2018 Mar; ():. PubMed ID: 29994591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assisting Operators in Heavy Industrial Tasks: On the Design of an Optimized Cooperative Impedance Fuzzy-Controller With Embedded Safety Rules.
    Roveda L; Haghshenas S; Caimmi M; Pedrocchi N; Molinari Tosatti L
    Front Robot AI; 2019; 6():75. PubMed ID: 33501090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.