These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33826517)

  • 61. Artificial Fuzzy-PID Gain Scheduling Algorithm Design for Motion Control in Differential Drive Mobile Robotic Platforms.
    Yousfi Allagui N; Salem FA; Aljuaid AM
    Comput Intell Neurosci; 2021; 2021():5542888. PubMed ID: 34707650
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A Multi-Function Force Sensing Instrument for Variable Admittance Robot Control in Retinal Microsurgery.
    He X; Balicki M; Gehlbach P; Handa J; Taylor R; Iordachita I
    IEEE Int Conf Robot Autom; 2014 May; 2014():1411-1418. PubMed ID: 25383234
    [TBL] [Abstract][Full Text] [Related]  

  • 63. T-S model based indirect adaptive fuzzy control using online parameter estimation.
    Park CW; Cho YW
    IEEE Trans Syst Man Cybern B Cybern; 2004 Dec; 34(6):2293-302. PubMed ID: 15619930
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Bayesian Estimation of Human Impedance and Motion Intention for Human-Robot Collaboration.
    Yu X; He W; Li Y; Xue C; Li J; Zou J; Yang C
    IEEE Trans Cybern; 2021 Apr; 51(4):1822-1834. PubMed ID: 31647450
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Evaluation of upper extremity robot-assistances in subacute and chronic stroke subjects.
    Ziherl J; Novak D; Olenšek A; Mihelj M; Munih M
    J Neuroeng Rehabil; 2010 Oct; 7():52. PubMed ID: 20955566
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Adaptive Admittance Control for an Ankle Exoskeleton Using an EMG-Driven Musculoskeletal Model.
    Yao S; Zhuang Y; Li Z; Song R
    Front Neurorobot; 2018; 12():16. PubMed ID: 29692719
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A Novel Human Intention Prediction Approach Based on Fuzzy Rules through Wearable Sensing in Human-Robot Handover.
    Zou R; Liu Y; Li Y; Chu G; Zhao J; Cai H
    Biomimetics (Basel); 2023 Aug; 8(4):. PubMed ID: 37622963
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A force-controlled planar haptic device for movement control analysis of the human arm.
    de Vlugt E; Schouten AC; van der Helm FC; Teerhuis PC; Brouwn GG
    J Neurosci Methods; 2003 Oct; 129(2):151-68. PubMed ID: 14511818
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Learning compliant manipulation through kinesthetic and tactile human-robot interaction.
    Kronander K; Billard A
    IEEE Trans Haptics; 2014; 7(3):367-80. PubMed ID: 25248219
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Adaptive Ascent Control of a Collaborative Object Transportation System Using Two Quadrotors.
    Pokorný M; Nowaková J; Dočekal T
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458911
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Force-assisted ultrasound imaging system through dual force sensing and admittance robot control.
    Fang TY; Zhang HK; Finocchi R; Taylor RH; Boctor EM
    Int J Comput Assist Radiol Surg; 2017 Jun; 12(6):983-991. PubMed ID: 28343302
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Admittance Control Scheme Comparison of EXO-UL8: A Dual-Arm Exoskeleton Robotic System.
    Shen Y; Sun J; Ma J; Rosen J
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():611-617. PubMed ID: 31374698
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Human-Robot Interaction With Robust Prediction of Movement Intention Surpasses Manual Control.
    Veselic S; Zito C; Farina D
    Front Neurorobot; 2021; 15():695022. PubMed ID: 34658829
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Force-based Safe Vein Cannulation in Robot-assisted Retinal Surgery: A Preliminary Study.
    Wu J; He C; Zhou M; Ebrahimi A; Urias M; Patel NA; Liu YH; Gehlbach P; Iordachita I
    Int Symp Med Robot; 2020 Nov; 2020():. PubMed ID: 34595484
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Control of a manipulator robot by neuro-fuzzy subsets form approach control optimized by the genetic algorithms.
    Refoufi S; Benmahammed K
    ISA Trans; 2018 Jun; 77():133-145. PubMed ID: 29661551
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Optimized Assistive Human-Robot Interaction Using Reinforcement Learning.
    Modares H; Ranatunga I; Lewis FL; Popa DO
    IEEE Trans Cybern; 2016 Mar; 46(3):655-67. PubMed ID: 25823055
    [TBL] [Abstract][Full Text] [Related]  

  • 77. An intelligent control method based on fuzzy logic for a robotic testing system for the human spine.
    Tian L
    J Biomech Eng; 2005 Oct; 127(5):807-12. PubMed ID: 16248310
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Influence of Size-Weight Illusion on Usability in Haptic Human-Robot Collaboration.
    Schmidtler J; Bengler K
    IEEE Trans Haptics; 2018; 11(1):85-96. PubMed ID: 28976323
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A Brain-Robot Interaction System by Fusing Human and Machine Intelligence.
    Mao X; Li W; Lei C; Jin J; Duan F; Chen S
    IEEE Trans Neural Syst Rehabil Eng; 2019 Mar; 27(3):533-542. PubMed ID: 30716043
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effect of Visuo-Motor Co-location on 3D Fitts' Task Performance in Physical and Virtual Environments.
    Fu MJ; Hershberger AD; Sano K; Cavuşoğlu MC
    Presence (Camb); 2012; 21(3):305-320. PubMed ID: 24348003
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.