These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 33826605)
1. Quantifying evolutionary importance of protein sites: A Tale of two measures. Sharir-Ivry A; Xia Y PLoS Genet; 2021 Apr; 17(4):e1009476. PubMed ID: 33826605 [TBL] [Abstract][Full Text] [Related]
3. Analysis of evolutionary conservation patterns and their influence on identifying protein functional sites. Fang C; Noguchi T; Yamana H J Bioinform Comput Biol; 2014 Oct; 12(5):1440003. PubMed ID: 25362840 [TBL] [Abstract][Full Text] [Related]
4. Functional Sites Induce Long-Range Evolutionary Constraints in Enzymes. Jack BR; Meyer AG; Echave J; Wilke CO PLoS Biol; 2016 May; 14(5):e1002452. PubMed ID: 27138088 [TBL] [Abstract][Full Text] [Related]
5. Improvement in protein functional site prediction by distinguishing structural and functional constraints on protein family evolution using computational design. Cheng G; Qian B; Samudrala R; Baker D Nucleic Acids Res; 2005; 33(18):5861-7. PubMed ID: 16224101 [TBL] [Abstract][Full Text] [Related]
6. Profile comparison revealed deviation from structural constraint at the positively selected sites. Oda H; Ota M; Toh H Biosystems; 2016 Sep; 147():67-77. PubMed ID: 27443483 [TBL] [Abstract][Full Text] [Related]
7. Active Site-Induced Evolutionary Constraints Follow Fold Polarity Principles in Soluble Globular Enzymes. Mayorov A; Dal Peraro M; Abriata LA Mol Biol Evol; 2019 Aug; 36(8):1728-1733. PubMed ID: 31004173 [TBL] [Abstract][Full Text] [Related]
8. Discarding functional residues from the substitution table improves predictions of active sites within three-dimensional structures. Gong S; Blundell TL PLoS Comput Biol; 2008 Oct; 4(10):e1000179. PubMed ID: 18833291 [TBL] [Abstract][Full Text] [Related]
9. A global analysis of function and conservation of catalytic residues in enzymes. Ribeiro AJM; Tyzack JD; Borkakoti N; Holliday GL; Thornton JM J Biol Chem; 2020 Jan; 295(2):314-324. PubMed ID: 31796628 [TBL] [Abstract][Full Text] [Related]
10. The evolutionary origins and catalytic importance of conserved electrostatic networks within TIM-barrel proteins. Livesay DR; La D Protein Sci; 2005 May; 14(5):1158-70. PubMed ID: 15840824 [TBL] [Abstract][Full Text] [Related]
12. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases. Iyer LM; Koonin EV; Aravind L BMC Struct Biol; 2003 Jan; 3():1. PubMed ID: 12553882 [TBL] [Abstract][Full Text] [Related]
13. Are protein-protein interfaces more conserved in sequence than the rest of the protein surface? Caffrey DR; Somaroo S; Hughes JD; Mintseris J; Huang ES Protein Sci; 2004 Jan; 13(1):190-202. PubMed ID: 14691234 [TBL] [Abstract][Full Text] [Related]
14. Analysis of catalytic residues in enzyme active sites. Bartlett GJ; Porter CT; Borkakoti N; Thornton JM J Mol Biol; 2002 Nov; 324(1):105-21. PubMed ID: 12421562 [TBL] [Abstract][Full Text] [Related]
15. A protein evolution model with independent sites that reproduces site-specific amino acid distributions from the Protein Data Bank. Bastolla U; Porto M; Roman HE; Vendruscolo M BMC Evol Biol; 2006 May; 6():43. PubMed ID: 16737532 [TBL] [Abstract][Full Text] [Related]
16. Active site prediction using evolutionary and structural information. Sankararaman S; Sha F; Kirsch JF; Jordan MI; Sjölander K Bioinformatics; 2010 Mar; 26(5):617-24. PubMed ID: 20080507 [TBL] [Abstract][Full Text] [Related]
17. Functional divergence and evolutionary turnover in mammalian phosphoproteomes. Freschi L; Osseni M; Landry CR PLoS Genet; 2014 Jan; 10(1):e1004062. PubMed ID: 24465218 [TBL] [Abstract][Full Text] [Related]