BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33826795)

  • 1. Ruthenium-Catalyzed Enantioselective Propargylic Phosphinylation of Propargylic Alcohols with Phosphine Oxides.
    Liu S; Tanabe Y; Kuriyama S; Sakata K; Nishibayashi Y
    Angew Chem Int Ed Engl; 2021 May; 60(20):11231-11236. PubMed ID: 33826795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Propargylic Substituents on Enantioselectivity and Reactivity in Ruthenium-Catalyzed Propargylic Substitution Reactions: A DFT Study.
    Sakata K; Uehara Y; Kohara S; Yoshikawa T; Nishibayashi Y
    ACS Omega; 2022 Oct; 7(41):36634-36642. PubMed ID: 36278073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ruthenium-catalyzed propargylic substitution reactions of propargylic alcohols with oxygen-, nitrogen-, and phosphorus-centered nucleophiles.
    Nishibayashi Y; Milton MD; Inada Y; Yoshikawa M; Wakiji I; Hidai M; Uemura S
    Chemistry; 2005 Feb; 11(5):1433-51. PubMed ID: 15651018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interplay of diruthenium catalyst in controlling enantioselective propargylic substitution reactions with visible light-generated alkyl radicals.
    Zhang Y; Tanabe Y; Kuriyama S; Sakata K; Nishibayashi Y
    Nat Commun; 2023 Feb; 14(1):859. PubMed ID: 36823151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rh-Catalyzed Regio- and Enantioselective Allylic Phosphinylation.
    Li B; Liu M; Rehman SU; Li C
    J Am Chem Soc; 2022 Feb; 144(7):2893-2898. PubMed ID: 35157432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ruthenium- and Copper-Catalyzed Propargylic Substitution Reactions of Propargylic Alcohol Derivatives with Hydrazones.
    Liu S; Tanabe Y; Kuriyama S; Sakata K; Nishibayashi Y
    Chemistry; 2021 Nov; 27(63):15650-15659. PubMed ID: 34606139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ruthenium-catalyzed propargylic substitution reaction of propargylic alcohols with thiols: a general synthetic route to propargylic sulfides.
    Inada Y; Nishibayashi Y; Hidai M; Uemura S
    J Am Chem Soc; 2002 Dec; 124(51):15172-3. PubMed ID: 12487582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperative catalytic reactions using distinct transition-metal catalysts: ruthenium- and copper-catalyzed enantioselective propargylic alkylation.
    Ikeda M; Miyake Y; Nishibayashi Y
    Chemistry; 2012 Mar; 18(11):3321-8. PubMed ID: 22298383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chiral phosphoric acid-catalyzed enantioselective phosphinylation of 3,4-dihydroisoquinolines with diarylphosphine oxides.
    Guo Y; Li N; Li J; Bi X; Gao Z; Duan YN; Xiao J
    Commun Chem; 2023 Feb; 6(1):26. PubMed ID: 36759563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enantioselectivity in Ruthenium-Catalyzed Propargylic Substitution Reactions of Propargylic Alcohols with Acetone: A DFT Study.
    Sakata K; Goto Y; Yoshikawa T; Nishibayashi Y
    Chem Asian J; 2021 Nov; 16(22):3760-3766. PubMed ID: 34549529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chiral Brønsted Acid Catalyzed Enantioconvergent Propargylic Substitution Reaction of Racemic Secondary Propargylic Alcohols with Thiols.
    Kikuchi J; Takano K; Ota Y; Umemiya S; Terada M
    Chemistry; 2020 Sep; 26(49):11124-11128. PubMed ID: 32274831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BiCl3-catalyzed propargylic substitution reaction of propargylic alcohols with C-, O-, S- and N-centered nucleophiles.
    Zhan ZP; Yang WZ; Yang RF; Yu JL; Li JP; Liu HJ
    Chem Commun (Camb); 2006 Aug; (31):3352-4. PubMed ID: 16883434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper-catalysed enantioselective intramolecular etherification of propargylic esters: synthetic approach to chiral isochromans.
    Liu S; Nakajima K; Nishibayashi Y
    RSC Adv; 2019 Jun; 9(33):18918-18922. PubMed ID: 35516894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper-catalyzed enantioselective propargylic etherification of propargylic esters with alcohols.
    Nakajima K; Shibata M; Nishibayashi Y
    J Am Chem Soc; 2015 Feb; 137(7):2472-5. PubMed ID: 25658141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Palladium-catalyzed cyclization of propargylic compounds.
    Guo LN; Duan XH; Liang YM
    Acc Chem Res; 2011 Feb; 44(2):111-22. PubMed ID: 21028868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scope and advances in the catalytic propargylic substitution reaction.
    Roy R; Saha S
    RSC Adv; 2018 Aug; 8(54):31129-31193. PubMed ID: 35548716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ruthenium-catalyzed formation of aryl(diphenyl)phosphine oxides by reactions of propargylic alcohols with diphenylphosphine oxide.
    Onodera G; Matsumoto H; Milton MD; Nishibayashi Y; Uemura S
    Org Lett; 2005 Sep; 7(18):4029-32. PubMed ID: 16119959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applications of Iridium-Catalyzed Asymmetric Allylic Substitution Reactions in Target-Oriented Synthesis.
    Qu J; Helmchen G
    Acc Chem Res; 2017 Oct; 50(10):2539-2555. PubMed ID: 28937739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cu-Catalyzed S
    Wang B; Wang X; Yin X; Yu W; Liao Y; Ye J; Wang M; Liao J
    Org Lett; 2019 Jun; 21(11):3913-3917. PubMed ID: 31074282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remarkable effect of N-substituent on enantioselective ruthenium-catalyzed propargylation of indoles with propargylic alcohols.
    Matsuzawa H; Kanao K; Miyake Y; Nishibayashi Y
    Org Lett; 2007 Dec; 9(26):5561-4. PubMed ID: 18044911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.