These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 33826801)
1. High-Throughput and Low-Cost Genotyping Method for Plant Genome Editing. Liu L; Chen R; Fugina CJ; Siegel B; Jackson D Curr Protoc; 2021 Apr; 1(4):e100. PubMed ID: 33826801 [TBL] [Abstract][Full Text] [Related]
2. A high-throughput skim-sequencing approach for genotyping, dosage estimation and identifying translocations. Adhikari L; Shrestha S; Wu S; Crain J; Gao L; Evers B; Wilson D; Ju Y; Koo DH; Hucl P; Pozniak C; Walkowiak S; Wang X; Wu J; Glaubitz JC; DeHaan L; Friebe B; Poland J Sci Rep; 2022 Oct; 12(1):17583. PubMed ID: 36266371 [TBL] [Abstract][Full Text] [Related]
3. Genome Editing of Rice by CRISPR-Cas: End-to-End Pipeline for Crop Improvement. Das A; Ghana P; Rudrappa B; Gandhi R; Tavva VS; Mohanty A Methods Mol Biol; 2021; 2238():115-134. PubMed ID: 33471328 [TBL] [Abstract][Full Text] [Related]
4. Skim sequencing: an advanced NGS technology for crop improvement. Kumar P; Choudhary M; Jat BS; Kumar B; Singh V; Kumar V; Singla D; Rakshit S J Genet; 2021; 100():. PubMed ID: 34238778 [TBL] [Abstract][Full Text] [Related]
5. High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Wang P; Zhang J; Sun L; Ma Y; Xu J; Liang S; Deng J; Tan J; Zhang Q; Tu L; Daniell H; Jin S; Zhang X Plant Biotechnol J; 2018 Jan; 16(1):137-150. PubMed ID: 28499063 [TBL] [Abstract][Full Text] [Related]
6. Application of genotyping by sequencing technology to a variety of crop breeding programs. Kim C; Guo H; Kong W; Chandnani R; Shuang LS; Paterson AH Plant Sci; 2016 Jan; 242():14-22. PubMed ID: 26566821 [TBL] [Abstract][Full Text] [Related]
7. Efficient genome-wide genotyping strategies and data integration in crop plants. Torkamaneh D; Boyle B; Belzile F Theor Appl Genet; 2018 Mar; 131(3):499-511. PubMed ID: 29352324 [TBL] [Abstract][Full Text] [Related]
8. [Prospects for application of breakthrough technologies in breeding: The CRISPR/Cas9 system for plant genome editing]. Khlestkina EK; Shumny VK Genetika; 2016 Jul; 52(7):774-87. PubMed ID: 29368840 [TBL] [Abstract][Full Text] [Related]
9. Edit at will: Genotype independent plant transformation in the era of advanced genomics and genome editing. Kausch AP; Nelson-Vasilchik K; Hague J; Mookkan M; Quemada H; Dellaporta S; Fragoso C; Zhang ZJ Plant Sci; 2019 Apr; 281():186-205. PubMed ID: 30824051 [TBL] [Abstract][Full Text] [Related]
10. Simple Protocol for Generating and Genotyping Genome-Edited Mice With CRISPR-Cas9 Reagents. Fernández A; Morín M; Muñoz-Santos D; Josa S; Montero A; Rubio-Fernández M; Cantero M; Fernández J; Del Hierro MJ; Castrillo M; Moreno-Pelayo MÁ; Montoliu L Curr Protoc Mouse Biol; 2020 Mar; 10(1):e69. PubMed ID: 32159922 [TBL] [Abstract][Full Text] [Related]
11. Current and future editing reagent delivery systems for plant genome editing. Ran Y; Liang Z; Gao C Sci China Life Sci; 2017 May; 60(5):490-505. PubMed ID: 28527114 [TBL] [Abstract][Full Text] [Related]
12. Genome-Wide SNP Calling from Genotyping by Sequencing (GBS) Data: A Comparison of Seven Pipelines and Two Sequencing Technologies. Torkamaneh D; Laroche J; Belzile F PLoS One; 2016; 11(8):e0161333. PubMed ID: 27547936 [TBL] [Abstract][Full Text] [Related]
13. An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice. Toda E; Koiso N; Takebayashi A; Ichikawa M; Kiba T; Osakabe K; Osakabe Y; Sakakibara H; Kato N; Okamoto T Nat Plants; 2019 Apr; 5(4):363-368. PubMed ID: 30911123 [TBL] [Abstract][Full Text] [Related]
14. Perspectives on the Application of Genome-Editing Technologies in Crop Breeding. Hua K; Zhang J; Botella JR; Ma C; Kong F; Liu B; Zhu JK Mol Plant; 2019 Aug; 12(8):1047-1059. PubMed ID: 31260812 [TBL] [Abstract][Full Text] [Related]
15. Advanced editing of the nuclear and plastid genomes in plants. Piatek AA; Lenaghan SC; Neal Stewart C Plant Sci; 2018 Aug; 273():42-49. PubMed ID: 29907308 [TBL] [Abstract][Full Text] [Related]
16. Approaches for the sensitive detection of rare base and prime editing events. Nguyen Tran MT; Rajendra KC; Patterson FM; Liu GS; Cook AL; Hewitt AW Methods; 2021 Oct; 194():75-82. PubMed ID: 33484827 [TBL] [Abstract][Full Text] [Related]
17. Role of NGS and SNP genotyping methods in sugarcane improvement programs. Manimekalai R; Suresh G; Govinda Kurup H; Athiappan S; Kandalam M Crit Rev Biotechnol; 2020 Sep; 40(6):865-880. PubMed ID: 32508157 [TBL] [Abstract][Full Text] [Related]
18. H Wu TM; Huang JZ; Oung HM; Hsu YT; Tsai YC; Hong CY Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31404948 [TBL] [Abstract][Full Text] [Related]
19. Streamlined whole-genome genotyping through NGS-enhanced thermal asymmetric interlaced (TAIL)-PCR. Zhao S; Wang Y; Zhu Z; Chen P; Liu W; Wang C; Lu H; Xiang Y; Liu Y; Qian Q; Chang Y Plant Commun; 2024 Sep; 5(9):100983. PubMed ID: 38845197 [TBL] [Abstract][Full Text] [Related]
20. mInDel: a high-throughput and efficient pipeline for genome-wide InDel marker development. Lv Y; Liu Y; Zhao H BMC Genomics; 2016 Apr; 17():290. PubMed ID: 27079510 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]