These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 3382682)
21. Evidence that oleoyl-CoA and ATP-dependent elongations coexist in rapeseed (Brassica napus L.). Domergue F; Chevalier S; Santarelli X; Cassagne C; Lessire R Eur J Biochem; 1999 Jul; 263(2):464-70. PubMed ID: 10406955 [TBL] [Abstract][Full Text] [Related]
22. Highly selective hydrolysis of fatty acyl-CoAs by calcium-independent phospholipase A2beta. Enzyme autoacylation and acyl-CoA-mediated reversal of calmodulin inhibition of phospholipase A2 activity. Jenkins CM; Yan W; Mancuso DJ; Gross RW J Biol Chem; 2006 Jun; 281(23):15615-24. PubMed ID: 16595686 [TBL] [Abstract][Full Text] [Related]
23. Do rat kidney cortex microsomes possess the enzymatic machinery to desaturate and chain elongate fatty acyl-CoA derivatives? Suneja SK; Nagi MN; Cook L; Osei P; Cinti DL Lipids; 1991 May; 26(5):359-63. PubMed ID: 1895882 [TBL] [Abstract][Full Text] [Related]
24. Mechanism for adaptive modification during cold acclimation of phospholipid acyl chain composition in Tetrahymena. II. Activities of 2-acyl-sn-glycerol-3-phosphorylcholine and 2-acyl-sn-glycerol-3- phosphorylethanolamine acyltransferases involving the reacylation. Yoshioka S; Kameyama Y; Nozawa Y Biochim Biophys Acta; 1984 Mar; 793(1):34-41. PubMed ID: 6704412 [TBL] [Abstract][Full Text] [Related]
25. Dehydration of 3-hydroxyacyl-CoA in brain very-long-chain fatty acid synthesis. Knoll A; Bessoule JJ; Sargueil F; Cassagne C Neurochem Int; 1999 Apr; 34(4):255-67. PubMed ID: 10372912 [TBL] [Abstract][Full Text] [Related]
26. Synthesis of arachidonoyl coenzyme A and docosahexaenoyl coenzyme A in synaptic plasma membranes of cerebrum and microsomes of cerebrum, cerebellum, and brain stem of rat brain. Reddy TS; Bazan NG J Neurosci Res; 1985; 13(3):381-90. PubMed ID: 3989882 [TBL] [Abstract][Full Text] [Related]
27. Fatty acid elongation in yeast--biochemical characteristics of the enzyme system and isolation of elongation-defective mutants. Dittrich F; Zajonc D; Hühne K; Hoja U; Ekici A; Greiner E; Klein H; Hofmann J; Bessoule JJ; Sperling P; Schweizer E Eur J Biochem; 1998 Mar; 252(3):477-85. PubMed ID: 9546663 [TBL] [Abstract][Full Text] [Related]
28. Acyl-coenzyme A binding protein expression alters liver fatty acyl-coenzyme A metabolism. Huang H; Atshaves BP; Frolov A; Kier AB; Schroeder F Biochemistry; 2005 Aug; 44(30):10282-97. PubMed ID: 16042405 [TBL] [Abstract][Full Text] [Related]
29. Acyltransferase activities in rat lung microsomes. Hasegawa-Sasaki H; Ohno K Biochim Biophys Acta; 1975 Mar; 380(3):486-95. PubMed ID: 1138876 [TBL] [Abstract][Full Text] [Related]
30. Utilization of different fatty acyl-CoA thioesters by serine palmitoyltransferase from rat brain. Merrill AH; Williams RD J Lipid Res; 1984 Feb; 25(2):185-8. PubMed ID: 6707526 [TBL] [Abstract][Full Text] [Related]
31. Fatty acid biosynthesis in Erlich cells. The mechanism of short term control by exogenous free fatty acids. McGee R; Spector AA J Biol Chem; 1975 Jul; 250(14):5419-25. PubMed ID: 237919 [TBL] [Abstract][Full Text] [Related]
32. Esterification of retinol in lacrimal gland. Evidence for acyl-CoA:retinol acyltransferase activity. Ubels JL; Huebler SM Invest Ophthalmol Vis Sci; 1990 Mar; 31(3):582-9. PubMed ID: 2318596 [TBL] [Abstract][Full Text] [Related]
33. Determination of acyl-CoA esters and acyl-CoA synthetase activity in mouse brain areas by liquid chromatography-electrospray ionization-tandem mass spectrometry. Kasuya F; Masuyama T; Yamashita T; Nakamoto K; Tokuyama S; Kawakami H J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Jun; 929():45-50. PubMed ID: 23644500 [TBL] [Abstract][Full Text] [Related]
34. Inhibitory effect of long chain fatty acyl CoAs on RNA polymerase from Escherichia coli. Yokokawa M; Fujiwara A; Shimada H; Yasumasu I J Biochem; 1983 Aug; 94(2):415-20. PubMed ID: 6355076 [TBL] [Abstract][Full Text] [Related]
35. Regulation of sex pheromone biosynthesis in the housefly, Musca domestica: relative contribution of the elongation and reductive steps. Tillman-Wall JA; Vanderwel D; Kuenzli ME; Reitz RC; Blomquist GJ Arch Biochem Biophys; 1992 Nov; 299(1):92-9. PubMed ID: 1444456 [TBL] [Abstract][Full Text] [Related]
36. Interaction of amphiphilic substrates (acyl-CoAs) and their metabolites (free fatty acids) with microsomes from mouse sciatic nerves. Juguelin H; Bessoule JJ; Cassagne C Biochim Biophys Acta; 1991 Sep; 1068(1):41-51. PubMed ID: 1892854 [TBL] [Abstract][Full Text] [Related]
37. Mechanisms by which fatty-acyl-CoA esters inhibit or activate glucose-6-phosphatase in intact and detergent-treated rat liver microsomes. Mithieux G; Zitoun C Eur J Biochem; 1996 Feb; 235(3):799-803. PubMed ID: 8654431 [TBL] [Abstract][Full Text] [Related]
38. Valproic acid selectively inhibits conversion of arachidonic acid to arachidonoyl-CoA by brain microsomal long-chain fatty acyl-CoA synthetases: relevance to bipolar disorder. Bazinet RP; Weis MT; Rapoport SI; Rosenberger TA Psychopharmacology (Berl); 2006 Jan; 184(1):122-9. PubMed ID: 16344985 [TBL] [Abstract][Full Text] [Related]
39. Arginyl residues are involved in acyl-CoA binding to the elongase from etiolated leek seedlings. Santarelli X; Chevalier S; Cassagne C; Lessire R Biochim Biophys Acta; 1998 Apr; 1391(3):357-66. PubMed ID: 9555095 [TBL] [Abstract][Full Text] [Related]
40. Human carbonyl reductase 1 participating in intestinal first-pass drug metabolism is inhibited by fatty acids and acyl-CoAs. Hara A; Endo S; Matsunaga T; El-Kabbani O; Miura T; Nishinaka T; Terada T Biochem Pharmacol; 2017 Aug; 138():185-192. PubMed ID: 28450226 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]