These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33826969)

  • 1. Fluorination to enhance superlubricity performance between self-assembled monolayer and graphite in water.
    Li J; Cao W; Li J; Ma M
    J Colloid Interface Sci; 2021 Aug; 596():44-53. PubMed ID: 33826969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interlayer Friction and Superlubricity in Single-Crystalline Contact Enabled by Two-Dimensional Flake-Wrapped Atomic Force Microscope Tips.
    Liu Y; Song A; Xu Z; Zong R; Zhang J; Yang W; Wang R; Hu Y; Luo J; Ma T
    ACS Nano; 2018 Aug; 12(8):7638-7646. PubMed ID: 30060665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superlubricity of Graphite Sliding against Graphene Nanoflake under Ultrahigh Contact Pressure.
    Li J; Li J; Luo J
    Adv Sci (Weinh); 2018 Nov; 5(11):1800810. PubMed ID: 30479926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tribo-Induced Interfacial Material Transfer of an Atomic Force Microscopy Probe Assisting Superlubricity in a WS
    Tian J; Yin X; Li J; Qi W; Huang P; Chen X; Luo J
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):4031-4040. PubMed ID: 31889443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Origin of Superlubricity between Graphene and a Highly Hydrophobic Surface in Water.
    Li J; Cao W; Li J; Ma M; Luo J
    J Phys Chem Lett; 2019 Jun; 10(11):2978-2984. PubMed ID: 31094522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insight Into the Superlubricity and Self-Assembly of Liquid Crystals.
    Tan S; Tao J; Luo W; Shi H; Tu B; Jiang H; Liu Y; Xu H; Zeng Q
    Front Chem; 2021; 9():668794. PubMed ID: 34178941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust microscale structural superlubricity between graphite and nanostructured surface.
    Huang X; Li T; Wang J; Xia K; Tan Z; Peng D; Xiang X; Liu B; Ma M; Zheng Q
    Nat Commun; 2023 May; 14(1):2931. PubMed ID: 37217500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural superlubricity in graphite flakes assembled under ambient conditions.
    Deng H; Ma M; Song Y; He Q; Zheng Q
    Nanoscale; 2018 Jul; 10(29):14314-14320. PubMed ID: 30019038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superlow Friction of Graphite Induced by the Self-Assembly of Sodium Dodecyl Sulfate Molecular Layers.
    Li J; Luo J
    Langmuir; 2017 Nov; 33(44):12596-12601. PubMed ID: 29037037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macroscale Superlubricity with Ultralow Wear and Ultrashort Running-In Period (∼1 s) through Phytic Acid-Based Complex Green Liquid Lubricants.
    Du C; Yu T; Zhang L; Deng H; Shen R; Li X; Feng Y; Wang D
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36755437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Abrasive Particles on Liquid Superlubricity and Mechanisms for Their Removal.
    Wen X; Bai P; Li Y; Cao H; Li S; Wang B; Fang J; Meng Y; Ma L; Tian Y
    Langmuir; 2021 Mar; 37(12):3628-3636. PubMed ID: 33733780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AFM Study on Superlubricity between Ti6Al4V/Polymer Surfaces Achieved with Liposomes.
    Duan Y; Liu Y; Li J; Feng S; Wen S
    Biomacromolecules; 2019 Apr; 20(4):1522-1529. PubMed ID: 30835459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalized Scaling Law of Structural Superlubricity.
    Wang J; Cao W; Song Y; Qu C; Zheng Q; Ma M
    Nano Lett; 2019 Nov; 19(11):7735-7741. PubMed ID: 31646868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superlubricity between a silicon tip and graphite enabled by the nanolithography-assisted nanoflakes tribo-transfer.
    Sha TD; Pang H; Fang L; Liu HX; Chen XC; Liu DM; Luo JB
    Nanotechnology; 2020 May; 31(20):205703. PubMed ID: 31995540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superlubricity of graphene nanoribbons on gold surfaces.
    Kawai S; Benassi A; Gnecco E; Söde H; Pawlak R; Feng X; Müllen K; Passerone D; Pignedoli CA; Ruffieux P; Fasel R; Meyer E
    Science; 2016 Feb; 351(6276):957-61. PubMed ID: 26917767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a superlubricity nanometer interface by Raman spectroscopy.
    Shi Y; Yang X; Liu B; Dong H; Zheng Q
    Nanotechnology; 2016 Aug; 27(32):325701. PubMed ID: 27348089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superlubricity between MoS
    Li H; Wang J; Gao S; Chen Q; Peng L; Liu K; Wei X
    Adv Mater; 2017 Jul; 29(27):. PubMed ID: 28497859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superlubricity of Graphite Induced by Multiple Transferred Graphene Nanoflakes.
    Li J; Gao T; Luo J
    Adv Sci (Weinh); 2018 Mar; 5(3):1700616. PubMed ID: 29593965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sliding Friction and Superlubricity of Colloidal AFM Probes Coated by Tribo-Induced Graphitic Transfer Layers.
    Buzio R; Gerbi A; Bernini C; Repetto L; Vanossi A
    Langmuir; 2022 Oct; 38(41):12570-12580. PubMed ID: 36190908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macroscale Superlubricity Achieved on the Hydrophobic Graphene Coating with Glycerol.
    Liu Y; Li J; Ge X; Yi S; Wang H; Liu Y; Luo J
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):18859-18869. PubMed ID: 32233416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.