These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33827069)

  • 1. A simple method for implanting free-floating microdevices into the nervous tissue.
    Khalifa A; Eisape A; Coughlin B; Cash S
    J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33827069
    [No Abstract]   [Full Text] [Related]  

  • 2. Tracking the Migration of Injectable Microdevices in the Rodent Brain Using a 9.4T Magnetic Resonance Imaging Scanner.
    Khalifa A; Weigand-Whittier J; Farrar CT; Cash S
    Front Neurosci; 2021; 15():738589. PubMed ID: 34675768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Injectable wireless microdevices: challenges and opportunities.
    Khalifa A; Lee S; Molnar AC; Cash S
    Bioelectron Med; 2021 Dec; 7(1):19. PubMed ID: 34937565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Microbead: A 0.009 mm
    Khalifa A; Liu Y; Karimi Y; Wang Q; Eisape A; Stanacevic M; Thakor N; Bao Z; Etienne-Cummings R
    IEEE Trans Biomed Circuits Syst; 2019 Oct; 13(5):971-985. PubMed ID: 31484132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An interventional image-guided microdevice implantation and retrieval method for in-vivo drug response assessment.
    Bhagavatula SK; Upadhyaya K; Miller BJ; Bursch P; Lammers A; Cima MJ; Silverman SG; Jonas O
    Med Phys; 2019 Nov; 46(11):5134-5143. PubMed ID: 31494942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Precise application of Traditional Chinese Medicine in minimally-invasive techniques].
    Dong FH
    Zhongguo Gu Shang; 2018 Jun; 31(6):493-496. PubMed ID: 29945400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of bioactive conducting polymers for neural interfaces.
    Poole-Warren L; Lovell N; Baek S; Green R
    Expert Rev Med Devices; 2010 Jan; 7(1):35-49. PubMed ID: 20021239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully implantable neural recording and stimulation interfaces: Peripheral nerve interface applications.
    Deshmukh A; Brown L; Barbe MF; Braverman AS; Tiwari E; Hobson L; Shunmugam S; Armitage O; Hewage E; Ruggieri MR; Morizio J
    J Neurosci Methods; 2020 Mar; 333():108562. PubMed ID: 31862376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method for large-scale implantation of 3D microdevice ensembles into brain and soft tissue.
    Sigurdsson SA; Yu Z; Lee J; Nurmikko A
    Microsyst Nanoeng; 2020; 6():97. PubMed ID: 34567706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detachable glass microelectrodes for recording action potentials in active moving organs.
    Barbic M; Moreno A; Harris TD; Kay MW
    Am J Physiol Heart Circ Physiol; 2017 Jun; 312(6):H1248-H1259. PubMed ID: 28476925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the safety of fast neural electrical impedance tomography in the rat brain.
    Hannan S; Faulkner M; Aristovich K; Avery J; Holder D
    Physiol Meas; 2019 Apr; 40(3):034003. PubMed ID: 30840933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel integration and packaging concepts of highly miniaturized inductively powered neural implants.
    Khalifa A; Karimi Y; Stanacevic M; Etienne-Cummings R
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():234-237. PubMed ID: 29059853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural engineering--a new discipline for analyzing and interacting with the nervous system.
    Durand DM
    Methods Inf Med; 2007; 46(2):142-6. PubMed ID: 17347744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesh Nanoelectronics: Seamless Integration of Electronics with Tissues.
    Dai X; Hong G; Gao T; Lieber CM
    Acc Chem Res; 2018 Feb; 51(2):309-318. PubMed ID: 29381054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Compact Free-Floating Device for Passive Charge-Balanced Neural Stimulation using PEDOT/CNT microelectrodes.
    Khalifa A; Liu Y; Bao Z; Etienne-Cummings R
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3375-3378. PubMed ID: 33018728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Medical applications of implantable drug delivery microdevices based on MEMS (Micro-Electro-Mechanical-Systems).
    Elman NM; Upadhyay UM
    Curr Pharm Biotechnol; 2010 Jun; 11(4):398-403. PubMed ID: 20201795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Future of Neural Interfaces.
    Laiwalla F; Nurmikko A
    Adv Exp Med Biol; 2019; 1101():225-241. PubMed ID: 31729678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microwave powered injectable neural stimulator.
    Towe BC; Larson PJ; Gulick DW
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5006-9. PubMed ID: 23367052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of a Self-Curling Cuff with a Soft, Ionically Conducting Neural Interface.
    Thakur R; Nair AR; Jin A; Fridman GY
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3750-3753. PubMed ID: 31946690
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.