BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 33828159)

  • 1. Deep learning approach for automatic landmark detection and alignment analysis in whole-spine lateral radiographs.
    Yeh YC; Weng CH; Huang YJ; Fu CJ; Tsai TT; Yeh CY
    Sci Rep; 2021 Apr; 11(1):7618. PubMed ID: 33828159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic recognition of whole-spine sagittal alignment and curvature analysis through a deep learning technique.
    Weng CH; Huang YJ; Fu CJ; Yeh YC; Yeh CY; Tsai TT
    Eur Spine J; 2022 Aug; 31(8):2092-2103. PubMed ID: 35366104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning Method for Precise Landmark Identification and Structural Assessment of Whole-Spine Radiographs.
    Noh SH; Lee G; Bae HJ; Han JY; Son SJ; Kim D; Park JY; Choi SK; Cho PG; Kim SH; Yuh WT; Lee SH; Park B; Kim KR; Kim KT; Ha Y
    Bioengineering (Basel); 2024 May; 11(5):. PubMed ID: 38790348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AI-Driven Segmentation and Automated Analysis of the Whole Sagittal Spine from X-ray Images for Spinopelvic Parameter Evaluation.
    Song SY; Seo MS; Kim CW; Kim YH; Yoo BC; Choi HJ; Seo SH; Kang SW; Song MG; Nam DC; Kim DH
    Bioengineering (Basel); 2023 Oct; 10(10):. PubMed ID: 37892959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fully automated radiological analysis of spinal disorders and deformities: a deep learning approach.
    Galbusera F; Niemeyer F; Wilke HJ; Bassani T; Casaroli G; Anania C; Costa F; Brayda-Bruno M; Sconfienza LM
    Eur Spine J; 2019 May; 28(5):951-960. PubMed ID: 30864061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Sagittal Balance of the Spine--Clinical Importance and Radiographic Assessment].
    Decker S; Müller CW; Omar M; Krettek C; Schwab F; Trobisch PD
    Z Orthop Unfall; 2016 Apr; 154(2):128-33. PubMed ID: 26670303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2-step deep learning model for landmarks localization in spine radiographs.
    Cina A; Bassani T; Panico M; Luca A; Masharawi Y; Brayda-Bruno M; Galbusera F
    Sci Rep; 2021 May; 11(1):9482. PubMed ID: 33947917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Context-Sensitive Facial Landmark Detection With Tree-Structured Modeling.
    Zeng J; Liu S; Li X; Mahdi DA; Wu F; Wang G
    IEEE Trans Image Process; 2018 May; 27(5):2096-2107. PubMed ID: 29432093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic deep learning-based assessment of spinopelvic coronal and sagittal alignment.
    Zerouali M; Parpaleix A; Benbakoura M; Rigault C; Champsaur P; Guenoun D
    Diagn Interv Imaging; 2023; 104(7-8):343-350. PubMed ID: 36959006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic Spine Segmentation and Parameter Measurement for Radiological Analysis of Whole-Spine Lateral Radiographs Using Deep Learning and Computer Vision.
    Kim YT; Jeong TS; Kim YJ; Kim WS; Kim KG; Yee GT
    J Digit Imaging; 2023 Aug; 36(4):1447-1459. PubMed ID: 37131065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MAPGI: Accurate identification of anatomical landmarks and diseased tissue in gastrointestinal tract using deep learning.
    Cogan T; Cogan M; Tamil L
    Comput Biol Med; 2019 Aug; 111():103351. PubMed ID: 31325742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Personal Computer-Based Cephalometric Landmark Detection With Deep Learning, Using Cephalograms on the Internet.
    Nishimoto S; Sotsuka Y; Kawai K; Ishise H; Kakibuchi M
    J Craniofac Surg; 2019 Jan; 30(1):91-95. PubMed ID: 30439733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Personalized X-ray 3-D reconstruction of the scoliotic spine from hybrid statistical and image-based models.
    Kadoury S; Cheriet F; Labelle H
    IEEE Trans Med Imaging; 2009 Sep; 28(9):1422-35. PubMed ID: 19336299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic 3-Dimensional Cephalometric Landmarking via Deep Learning.
    Dot G; Schouman T; Chang S; Rafflenbeul F; Kerbrat A; Rouch P; Gajny L
    J Dent Res; 2022 Oct; 101(11):1380-1387. PubMed ID: 35982646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combination of whole-spine lateral radiograph and lateral scanogram in the assessment of global sagittal balance.
    Jeon CH; Kwack KS; Park S; Lee HD; Chung NS
    Spine J; 2018 Feb; 18(2):255-260. PubMed ID: 28709947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intra- and inter-observer reliability of determining radiographic sagittal parameters of the spine and pelvis using a manual and a computer-assisted methods.
    Dimar JR; Carreon LY; Labelle H; Djurasovic M; Weidenbaum M; Brown C; Roussouly P
    Eur Spine J; 2008 Oct; 17(10):1373-9. PubMed ID: 18726124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of a new computer-assisted tool to measure spino-pelvic parameters.
    Lafage R; Ferrero E; Henry JK; Challier V; Diebo B; Liabaud B; Lafage V; Schwab F
    Spine J; 2015 Dec; 15(12):2493-502. PubMed ID: 26343243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Standing lateral radiographic positioning does not represent customary standing balance.
    Marks MC; Stanford CF; Mahar AT; Newton PO
    Spine (Phila Pa 1976); 2003 Jun; 28(11):1176-82. PubMed ID: 12782989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning-Based Regression and Classification for Automatic Landmark Localization in Medical Images.
    Noothout JMH; De Vos BD; Wolterink JM; Postma EM; Smeets PAM; Takx RAP; Leiner T; Viergever MA; Isgum I
    IEEE Trans Med Imaging; 2020 Dec; 39(12):4011-4022. PubMed ID: 32746142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reliability analysis for digital adolescent idiopathic scoliosis measurements.
    Kuklo TR; Potter BK; O'Brien MF; Schroeder TM; Lenke LG; Polly DW;
    J Spinal Disord Tech; 2005 Apr; 18(2):152-9. PubMed ID: 15800433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.